2,238 research outputs found

    Effect of lyophilized Azadirachta indica leaf powder on biochemical parameters of testis and epididymis in albino rats

    Get PDF
    The aim of the present study was to investigate the effect of lyophilized A. indica leaf extract (125, 250 and 375 mg in suspension of 1 mL Propylene Glycol, respectively / kg body weight) on androgen-dependent biochemical parameters such as cholesterol and glycogen in the testis, total protein, total free sugar, enzymes like acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in the testis and epididymis of both control and treated groups. Results indicated no significant difference in their body weight. However, testis and epididymis showed a significant decrease in their weights. The biochemical analysis showed a general decrease in the total protein content and the activity ofACP and, an increase in the total free sugar, glycogen, cholesterol contents and the activities of ALP and LDH in the dose-dependent treated rats. Since it is known that the accumulation of cholesterol and glycogen in the testis and epididymis are indicators of androgen deprivation. In this study such effects may have resulted from the deficiency in the level of circulating androgen, probably due to androgen deficiency resulting to the anti-androgenic property of the carbohydrate-rich nature of lyophilized A. indica leaf extract.© 2010 International Formulae Group. All rights reserved.Keywords: Lyophilized A. indica leaf extract, Testis, Epididymis, Biochemical parameters, Albino rats

    Effect of Bone Marrow-derived Mesenchymal Stem Cells and Umbilical Cord Blood-CD34+ cells on Experimental Rat liver Fibrosis

    Get PDF
    Background and Objective: Liver disease is one of the major causes of death in many countries. Hence, the development of effective therapies for liver fibrosis is a major aim of medical research. So this study was designed to investigate the therapeutical role of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) transplantation in the experimental rat liver fibrosis. Design and Method: Bone marrow-derived MSCs were isolated from femoral and tibial bones of male albino rats, then were grown and propagated in culture for 2 weeks and were characterized morphologically and by detection of CD29 by real time-PCR. Human umbilical cord blood cells were obtained after full-term caesarean delivery from healthy donors after written informed consent. Low-density mononuclear cells were separated over Ficoll- Paque (Gibco-Invitrogen, Grand Island, NY), and then CD34+ HSC was isolated using a magnetic cell sorter (MiniMACS; Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were then infused intraperitoneally in rats that received CCl4 injection to induce liver fibrosis. Rats were divided into 4 groups: control, CCl4, CCl4 plus MSC, and CCl4 plus CD34+. Liver tissue was examined histopathologically for all groups. The expression of collagen I and metalloproteinase-2 genes as a marker of liver fibrosis was measured by real time RT- PCR. Results: The results of the present study showed that both MSCs and CD34+ have a significant antifibrotic effect as evidenced by the significant decrease in liver collagen gene expression as well as the decrease in MMP-2 (p < 0.05) compared to the CCl4 group

    Autoantibody predictors of gastrointestinal symptoms in systemic sclerosis

    Get PDF
    Objectives: To assess the prevalence and burden of SSc-related gastrointestinal dysfunction (SSc-GI) and to evaluate associations with demographic, clinical and serological characteristics. // Methods: Patients completed the UCLA SCTC GIT 2.0 questionnaire for SSc-GI disease to assess the burden of GI disease across multiple functional and psychological domains. Questionnaire scores were assessed using non-parametric and quantile regression analyses. // Results: Our cohort included 526 patients with SSc, with a typical distribution of disease-associated autoantibodies (ACA, ARA, ATA, PM-Scl, U1RNP, U3RNP). We demonstrated associations between hallmark antibodies and the domain-specific burden of GI disease. In particular, ACA, ARA and ENA-negative demonstrated increased SSc-GI disease burden, while PM-Scl conferred relative protection. In a distributional analysis, associations with autoantibodies were particularly marked in those with the highest burden of GI disease. // Conclusion: There is a significant burden of SSc-GI disease in patients with SSc; reflux and bloating symptoms are most prominent. SSc hallmark antibodies may predict increased risk of SSc-GI disease, in particular ACA and ARA, while PM-Scl may be protective

    SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p

    The protein kinase R modifies gut physiology to limit colitis

    Full text link
    Here we investigate the function of the innate immune molecule protein kinase R (PKR) in intestinal inflammation. To model a colitogenic role of PKR, we determine the physiological response to dextran sulfate sodium (DSS) of wild-type and two transgenic mice strains mutated to express either a kinase-dead PKR or to ablate expression of the kinase. These experiments recognize kinase-dependent and -independent protection from DSS-induced weight loss and inflammation, against a kinase-dependent increase in the susceptibility to DSS-induced injury. We propose these effects arise through PKR-dependent alteration of gut physiology, evidenced as altered goblet cell function and changes to the gut microbiota at homeostasis that suppresses inflammasome activity by controlling autophagy. These findings establish that PKR functions as both a protein kinase and a signaling molecule in instituting immune homeostasis in the gut

    Magnetic Fluffy Dark Matter

    Full text link
    We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark Matter where the WIMP can scatter to a tower of heavier states. We assume a WIMP mass mχ∼O(1−100)m_\chi \sim \mathcal{O}(1-100) GeV and a constant splitting between successive states δ∼O(1−100)\delta \sim\mathcal{O}(1 - 100) keV. For the spin-independent scattering scenario we find that the direct experiments CDMS and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space, while for WIMPs that interact with nuclei via their magnetic moment a region of parameter space corresponding to mχ∼11m_{\chi}\sim 11 GeV and δ<15\delta < 15 keV is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE

    Gauged Flavor Group with Left-Right Symmetry

    Get PDF
    We construct an anomaly-free extension of the left-right symmetric model, where the maximal flavor group is gauged and anomaly cancellation is guaranteed by adding new vectorlike fermion states. We address the question of the lowest allowed flavor symmetry scale consistent with data. Because of the mechanism recently pointed out by Grinstein et al. tree-level flavor changing neutral currents turn out to play a very weak constraining role. The same occurs, in our model, for electroweak precision observables. The main constraint turns out to come from WR-mediated flavor changing neutral current box diagrams, primarily K - Kbar mixing. In the case where discrete parity symmetry is present at the TeV scale, this constraint implies lower bounds on the mass of vectorlike fermions and flavor bosons of 5 and 10 TeV respectively. However, these limits are weakened under the condition that only SU(2)_R x U(1)_{B-L} is restored at the TeV scale, but not parity. For example, assuming the SU(2) gauge couplings in the ratio gR/gL approx 0.7 allows the above limits to go down by half for both vectorlike fermions and flavor bosons. Our model provides a framework for accommodating neutrino masses and, in the parity symmetric case, provides a solution to the strong CP problem. The bound on the lepton flavor gauging scale is somewhat stronger, because of Big Bang Nucleosynthesis constraints. We argue, however, that the applicability of these constraints depends on the mechanism at work for the generation of neutrino masses.Comment: 1+23 pages, 1 table, 5 figures. v3: some more textual fixes (main change: discussion of Lepton Flavor Violating observables rephrased). Matches journal versio

    A new practical method to evaluate the Joule-Thomson coefficient for natural gases

    Get PDF
    © 2017, The Author(s). The Joule–Thomson (JT) phenomenon, the study of fluid temperature changes for a given pressure change at constant enthalpy, has great technological and scientific importance for designing, maintenance and prediction of hydrocarbon production. The phenomenon serves vital role in many facets of hydrocarbon production, especially associated with reservoir management such as interpretation of temperature logs of production and injection well, identification of water and gas entry locations in multilayer production scenarios, modelling of thermal response of hydrocarbon reservoirs and prediction of wellbore flowing temperature profile. The purpose of this study is to develop a new method for the evaluation of JT coefficient, as an essential parameter required to account the Joule–Thomson effects while predicting the flowing temperature profile for gas production wells. To do this, a new correction factor, CNM, has been developed through numerical analysis and proposed a practical method to predict CNM which can simplify the prediction of flowing temperature for gas production wells while accounting the Joule–Thomson effect. The developed correlation and methodology were validated through an exhaustive survey which has been conducted with 20 different gas mixture samples. For each sample, the model has been run for a wide range of temperature and pressure conditions, and the model was rigorously verified by comparison of the results estimated throughout the study with the results obtained from HYSYS and Peng–Robinson equation of state. It is observed that model is very simple and robust yet can accurately predict the Joule–Thomson effect

    Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types

    Get PDF
    Despite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely, neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated six differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, MAPKAPK3, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types
    • …
    corecore