25 research outputs found
Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes
Polysulfone (PSf) and chitosan (CS) blend membranes were prepared by incorporating titanium dioxide nanotubes (TiO2NT) in different compositions. The proper blending of PSf and CS in the PSf/CS/TiO2 membranes was confirmed by ATR-IR spectroscopy. The influence of nanotubes on morphology of membranes was investigated by Field Emission Scanning Electron Microscopy (FESEM). The effect of nanotubes on hydrophilicity of the membranes was studied by water swelling and contact angle measurements. The distribution of TiO2NT on the membrane surface was determined by Transmission Electron Microscope (TEM) analysis. The permeation property of PSf/CS/TiO2NT membranes was carried out by measuring the time dependent pure water flux (PWF). Bovine serum albumin (BSA) protein rejection studies were performed to know the antifouling properties. The rheological percolation threshold of PSf/CS/TiO2NT solutions was measured by viscosity studies. The nanotubes incorporated PSf/CS membranes showed enhanced permeation and antifouling properties compared to PSf/CS and nascent PSf ultrafiltration membranes. Membranes prepared well above rheological percolation threshold showed drastic reduction in pore size and acted as nanofiltration (NF) membranes
Road-based multi-metric forwarder evaluation for multipath video streaming in urban vehicular communication
In video streaming over vehicular communication, optimal selection of a video packet forwarder is a daunting issue due to the dynamic nature of Vehicular Ad-hoc NETworks (VANETs)and the high data rates of video. In most of the existing studies, extensive considerations of the essential metrics have not been considered. In order to achieve quality video streaming in vehicular network, important metrics for link connectivity and bandwidth efficiency need to be employed to minimize video packet error and losses. In order to address the aforementioned issues, a Road-based Multi-metric Forwarder Evaluation scheme for Multipath Video Streaming (RMF-MVS) has been proposed. The RMF-MVS scheme is adapted to be a Dynamic Self-Weighting score (DSW) (RMF-MVS+DSW) for forwarder vehicle selection. The scheme is based on multipath transmission. The performance of the scheme is evaluated using Peak Signal to Noise Ratio (PSNR), Structural SIMilarity index (SSIM), Packet Loss Ratio (PLR) and End-to-End Delay (E2ED) metrics. The proposed scheme is compared against two baseline schemes including Multipath Solution with Link and Node Disjoint (MSLND) and Multimedia Multi-metric Map-aware Routing Protocol (3MRP) with DSW (3MRP+DSW). The comparative performance assessment results justify the benefit of the proposed scheme based on various video streaming related metrics
Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial
Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council
Enhanced performance of Mindel membranes by incorporating conductive polymer and inorganic modifier for application in direct methanol fuel cells
Sulfonated polyethersulfone (SPES), polyaniline (PANI), and Cloisite 15 A® were used as modifiers for the fabrication of Mindel composite polymer electrolyte membranes (PEMs). Pristine Mindel and Mindel composite PEMs were fabricated by the solution intercalation technique. The presence of modifiers in the Mindel membrane matrix was confirmed by Fourier transform infrared (FTIR) studies. The primary characteristics of pristine Mindel and Mindel PEMs such as water uptake, methanol uptake, proton conductivity ion-exchange capacity (IEC), and chemical and mechanical stability were evaluated. The pore size of Mindel/SPES/Cloisite 15 composite PEM was increased owing to the addition of SPES and Cloisite 15. The higher proton conductivity of 4.323 × 10−4 S cm−1, enhanced IEC of 0.482 mequiv. g−1, and maximum water uptake (%) of 38.12 were noted for Mindel/SPES/Cloisite membrane. Membrane selectivity of all Mindel PEMs was enhanced by the addition of modifiers. The results of this study indicate that Mindel composite membranes could be utilized as PEMs for direct methanol fuel cell (DMFC)
Preparation, characterization and the effect of PANI coated TiO2 nanocomposites on the performance of polysulfone ultrafiltration membranes
Polysulfone ultrafiltration (UF) membranes with PANI TiO2 (polyaniline titania) nanocomposites and PEG 1000 (Polyethylene Glycol 1000) as additives were prepared by the phase inversion method. PANI TiO2 nanocomposites were synthesized by coating TiO2 nanotubes with PANI via chemical oxidative polymerization. The synthesized PANI TiO2 nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) analysis. PANI TiO2 nanocomposites with varying concentrations (0-1.5 wt%) were dispersed in the polysulfone membrane matrix with N-methyl-2-pyrrolidone (NMP) as solvent along with PEG 1000 as the pore former. The effect of addition of PANI TiO2 nanocomposites with different concentrations (0-1.5 wt%) on the membrane structure, performance, hydrophilicity and the antifouling nature of the membranes was analyzed. PANI TiO2 nanocomposite membranes showed better hydrophilicity, improved permeability, enhanced porosity, water uptake and good antifouling ability when compared with neat polysulfone membranes. The performance of the membranes improved with the increase in the addition of the PANI TiO2 nanocomposite. However, the membrane performance decreased slightly at 1.5 wt% addition of PANI TiO2 due to the agglomeration of PANI TiO2 at higher concentration. The well performed membranes were also subjected to heavy metal ion rejection. The membranes showed a rejection of 83.75% and 73.41% during the polymer enhanced ultrafiltration (PEUF) process and a rejection of 68% and 53.78% during the UF process for Pb2+ and Cd2+ respectively
Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B
Humic acid was immobilized on a polypropylene supported sodium alginate/hydroxyethyl cellulose blend membrane in the current work. The adsorption property of this membrane for the removal of cationic dyes, namely, methylene blue (MB) and rhodamine B (RhB), was extensively studied. Batch-adsorption experiments were conducted to investigate the adsorption behavior of dyes on the membrane with variation in adsorbent mass, initial dye concentration, pH, time, and temperature. The membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). Prepared membranes showed more than 98% removal capacity for both dyes under optimal conditions. Kinetic experiments revealed that the pseudo second order model exhibited the best correlation with the adsorption data. Dubinin-Radushkevich model indicated that the adsorption of dyes onto the membrane surface was by simple physisorption. The membrane was easily regenerated by simple acid treatment, and its efficiency remained significant even after four adsorption cycle
Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water
Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m 2 h bar and 40.11 L/m 2 h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m 2 h bar and 69.60 L/m 2 h bar, respectively
Feasibility study of cadmium adsorption by palm oil fuel ash (POFA)-based low-cost hollow fibre zeolitic membrane
Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. [Figure not available: see fulltext.]
Removal of toxic arsenic from aqueous media using polyphenylsulfone/cellulose acetate hollow fiber membranes containing zirconium oxide
Arsenic is one of the highly dangerous metalloid present in the polluted water, it's effective and economical removal is one of the major challenges to the researchers. It was planned to prepare hollow fiber membranes using polyphenylsulfone (PPSU) as a polymer, cellulose acetate (CA) and cellulose acetate phthalate (CAP) as additives with increased dosages (0.6, 1 and 1.5 wt%) of zirconium oxide (ZrO2) nanoparticle. The fabricated hollow fiber membranes were characterized by SEM, AFM, zeta potential, ATR-FTIR and XPS to analyze the membrane's morphologies (cross-section and surface), topography, surface charge and assessment of different functional groups. As used ZrO2 was characterized by TEM and XRD to analyze the morphology and crystallinity. The positron annihilation lifetime spectroscopy (PALS) analysis was carried out for neat and ZrO2 contained membranes, to study the expansion of free-volume in membrane morphology. Leaching studies of the used zirconium with respect to different pH from the ZrO2 contained hollow fiber membrane was also examined. The enhancement of membrane hydrophilicity was confirmed by contact angle, porosity, water uptake and pure water permeability measurements. Membranes prepared by 1 wt% of ZrO2 in PPSU/CA (PZCA-1) and 0.6 wt% of ZrO2 in PPSU/CAP (PZCAP-0.6) were proved to be efficient as arsenic removal membranes (i.e. PZCA-1 as 87.24% and PZCAP-0.6 as 70.48% and permeability of 89.94 L/m2h bar and 70.59 L/m2h bar respectively) using lab-prepared 1 ppm standard arsenic solution at pH range of 6.8 ± 0.2. Also, there is a decrease in the arsenic removal tendency was observed with the excessive dosages of ZrO2, which is due to the concentration polarization on surfaces of the membranes. Antifouling behavior of the prepared hollow fiber membranes was also studied using bovine serum albumin (BSA)