12,392 research outputs found

    Modeling and control of flexible space stations (slew maneuvers)

    Get PDF
    Large orbiting space structures are expected to experience mechanical vibrations arising from several disturbing forces such as those induced by shuttle takeoff or docking and crew movements. The problem is considered of modeling and control of large space structures subject to these and other disturbing forces. The system consists of a (rigid) massive body, which may play the role of experimental modules located at the center of the space station and flexible configurations, consisting of several beams, forming the space structure. A complete dynamic model of the system was developed using Hamilton's principle. This model consists of radial equations describing the translational motion of the central body, rotational equations describing the attitude motions of the body and several beam equations governing the vibration of the flexible members (platform) including appropriate boundary conditions. In summary, the dynamics of the space structure is governed by a complex system of interconnected partial and ordinary differential equations. Using Lyapunov's approach the asymptotic stability of the space structure is investigated. For asymptotic stability of the rest state (nominal trajectory), feedback controls are suggested. In the investigation, stability of the slewing maneuvers is also considered. Several numerical results are presented for illustration of the impact of coupling and the effectiveness of the stabilizing controls. Some insight is provided into the complexity of modeling, analysis and stabilization of actual space structures

    Analyzing Energy-efficiency and Route-selection of Multi-level Hierarchal Routing Protocols in WSNs

    Full text link
    The advent and development in the field of Wireless Sensor Networks (WSNs) in recent years has seen the growth of extremely small and low-cost sensors that possess sensing, signal processing and wireless communication capabilities. These sensors can be expended at a much lower cost and are capable of detecting conditions such as temperature, sound, security or any other system. A good protocol design should be able to scale well both in energy heterogeneous and homogeneous environment, meet the demands of different application scenarios and guarantee reliability. On this basis, we have compared six different protocols of different scenarios which are presenting their own schemes of energy minimizing, clustering and route selection in order to have more effective communication. This research is motivated to have an insight that which of the under consideration protocols suit well in which application and can be a guide-line for the design of a more robust and efficient protocol. MATLAB simulations are performed to analyze and compare the performance of LEACH, multi-level hierarchal LEACH and multihop LEACH.Comment: NGWMN with 7th IEEE Inter- national Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Assessment of Laws of the Wall During Flame–Wall Interaction of Premixed Flames Within Turbulent Boundary Layers

    Get PDF
    \ua9 The Author(s) 2024. The validity of the usual laws of the wall for Favre mean values of the streamwise velocity component and temperature for non-reacting flows has been assessed for turbulent premixed flame-wall interaction using Direct Numerical Simulation (DNS) data. Two different DNS databases corresponding to friction velocity-based Reynolds number of 110 and 180 representing unsteady head-on quenching of statistically planar flames within turbulent boundary layers have been considered. The usual log-law based expressions for the Favre mean values of the streamwise velocity and temperature for the inertial layer have been found to be inadequate at capturing the corresponding variations obtained from DNS data. The underlying assumptions of constant shear stress and the equilibrium of production and dissipation of turbulent kinetic energy underpinning the derivation of the usual log-law for the mean streamwise velocity have been found to be rendered invalid within the usual inertial layer during flame-wall interaction for both cases considered here. The heat flux does not remain constant within the usual inertial layer, and the turbulent flux of temperature exhibits counter-gradient transport within the so-called inertial layer for the cases considered in this work. These render the assumptions behind the derivation of the usual log-law for temperature to be invalid for application to turbulent flame-wall interaction. It has been found that previously proposed empirical modifications to the existing laws of the wall, which account for density and kinematic viscosity variations with temperature, do not significantly improve the agreement with the corresponding DNS data in the inertial layer and the inaccurate approximations for the kinematic viscosity compensated wall normal distance and the density compensated streamwise velocity component contribute to this disagreement. The DNS data has been utilised here to propose new expressions for the kinematic viscosity compensated wall normal distance and the density compensated streamwise velocity component, which upon using in the empirically modified law of wall expressions have been demonstrated to provide reasonable agreement with DNS data

    MODELLING AND OPTIMIZATION OF COMPUTER NETWORK TRAFFIC CONTROLLERS

    Get PDF
    During the past years, there has been increasing interest in the design and development of network traffic controllers capable of ensuring the QoS requirements of a wide range of applications. In this paper, we construct a dynamic model for the token-bucket algorithm: a traffic controller widely used in various QoS-aware protocol architectures. Based on our previous work, we use a system approach to develop a formal model of the traffic controller. This model serves as a basis to formally specify and evaluate the operation of the token-bucket algorithm. Then we develop an optimization algorithm based on a dynamic programming and genetic algorithm approach. We conduct an extensive campaign of numerical experiments allowing us to gain insight on the operation of the controller and evaluate the benefits of using a genetic algorithm approach to speed up the optimization process. Our results show that the use of the genetic algorithm proves particularly useful in reducing the computation time required to optimize the operation of a system consisting of multiple token-bucket-regulated sources. 1
    • …
    corecore