5 research outputs found

    An overview of biomass thermochemical conversion technologies in Malaysia

    Get PDF
    The rising pressure on both cleaner production and sustainable development have been the main driving force that pushes mankind to seek for alternative greener and sustainable feedstocks for chemical and energy production. The biomass ‘waste-to-wealth’ concept which convert low value biomass into value-added products which contain high economic potential, have attracted the attentions from both academicians and industry players. With a tropical climate, Malaysia has a rich agricultural sector and dense tropical rainforest, giving rise to abundance of biomass which most of them are underutilized. Hence, the biomass ‘waste-to-wealth’ conversion through various thermochemical conversion technologies and the prospective challenges towards commercialization in Malaysia are reviewed in this paper. In this paper, a critical review about the maturity status of the four most promising thermochemical conversion routes in Malaysia (i.e. gasification, pyrolysis, liquefaction and hydroprocessing) is given. The current development of thermochemical conversion technologies for biomass conversion in Malaysia is also reviewed and benchmarked against global progress. Besides, the core technical challenges in commercializing these green technologies are highlighted as well. Lastly, the future outlook for successful commercialization of these technologies in Malaysia is included

    Air pollution study of vehicles emission in high volume traffic: Selangor, Malaysia as a case study

    No full text
    In an internal combustion engine, a chemical reaction occurs between the oxygen in air and hydrocarbon fuel. Engines operate at what is termed the stoichiometric air/fuel ratio when there is the correct quantity of air to allow complete combustion of the fuel with no excess oxygen. In reality, the combustion process cannot be perfect and automotive engines emit several types of pollutants.Therefore, it is important to develop and deploy methods for obtaining real-world, on-road micro-scaled measurements of vehicle emissions to estimate the pollutants. In this work, several high traffic roads in Selangor will be selected for the road airquality measurement and analysis. Comparisons with simulations results, using the Operational Street Pollution Model (OSPM) are shown. The study shows that there were no serious of air pollution recorded in the period of January 2012. Air quality trends for the criteria pollutants in this month generally are continuing to show downward trends or stable trends well below the level of the Malaysian Ambient Air Quality Guideline (RMG). However, PM10 and ground-level O3 are the crucial pollutants in Selangor. The comprehensive review has revealed that moving vehicles creates a significant impact in air quality on the specific locations. Comparison with simulated data also showed good agreement thus indicating suitability of the model to be used in Malaysia condition
    corecore