24 research outputs found

    An integrated multi-omic approach demonstrates distinct molecular signatures between human obesity with and without metabolic complications: a case–control study

    Get PDF
    Objectives: To examine the hypothesis that obesity complicated by the metabolic syndrome, compared to uncomplicated obesity, has distinct molecular signatures and metabolic pathways. Methods: We analyzed a cohort of 39 participants with obesity that included 21 with metabolic syndrome, age-matched to 18 without metabolic complications. We measured in whole blood samples 754 human microRNAs (miRNAs), 704 metabolites using unbiased mass spectrometry metabolomics, and 25,682 transcripts, which include both protein coding genes (PCGs) as well as non-coding transcripts. We then identified differentially expressed miRNAs, PCGs, and metabolites and integrated them using databases such as mirDIP (mapping between miRNA-PCG network), Human Metabolome Database (mapping between metabolite-PCG network) and tools like MetaboAnalyst (mapping between metabolite-metabolic pathway network) to determine dysregulated metabolic pathways in obesity with metabolic complications. Results: We identified 8 significantly enriched metabolic pathways comprising 8 metabolites, 25 protein coding genes and 9 microRNAs which are each differentially expressed between the subjects with obesity and those with obesity and metabolic syndrome. By performing unsupervised hierarchical clustering on the enrichment matrix of the 8 metabolic pathways, we could approximately segregate the uncomplicated obesity strata from that of obesity with metabolic syndrome. Conclusions: The data suggest that at least 8 metabolic pathways, along with their various dysregulated elements, identified via our integrative bioinformatics pipeline, can potentially differentiate those with obesity from those with obesity and metabolic complications

    Characteristic MicroRNAs Linked to Dysregulated Metabolic Pathways in Qatari Adult Subjects With Obesity and Metabolic Syndrome

    Get PDF
    BackgroundObesity-associated dysglycemia is associated with metabolic disorders. MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with clinical features in obese Qatari individuals.MethodsWe analyzed a dataset of 39 age-matched patients that includes 18 subjects with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We measured 754 well-characterized human microRNAs (miRNAs) and identified differentially expressed miRNAs along with their significant associations with clinical markers in these patients.ResultsA total of 64 miRNAs were differentially expressed between metabolically healthy obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64 miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome. Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were significantly associated with cholesterol, whereas miR-130a-3p was significantly associated with LDL. Additionally, miR-652-3p’s differential expression correlated significantly with HDL and creatinine.ConclusionsMicroRNAs associated with metabolic syndrome in obese subjects may have a pathophysiologic role and can serve as markers for obese individuals predisposed to various metabolic diseases like diabetes

    The Replacement of five Consecutive Amino Acids in the Cyt1A Protein of Bacillus thuringiensis Enhances its Cytotoxic Activity against Lung Epithelial Cancer Cells

    No full text
    Cyt1A protein is a cytolytic protein encoded by the cyt gene of Bacillus thuringiensis subsp. israelensis (Bti) as part of the parasporal crystal proteins produced during the sporulation. Cyt1A protein is unique compared to the other endotoxins present in these parasporal crystals. Unlike δ-endotoxins, Cyt1A protein does not require receptors to bind to the target cell and activate the toxicity. It has the ability to affect a broad range of cell types and organisms, due to this characteristic. Cyt1A has been recognized to not only target the insect cells directly, but also recruit other endotoxins by acting as receptors. Due to these mode of actions, Cyt1A has been studied for its cytolytic activity against human cancer cell lines, although not extensively. In this study, we report a novel Cyt1A protein produced by a Bti strain QBT229 isolated from Qatar. When tested for its cytotoxicity against lung cancer cells, this local strain showed considerably higher activity compared to that of the reference Bti and other strains tested. The possible reasons for such enhanced activity were explored at the gene and protein levels. It was evidenced that five consecutive amino acid replacements in the β8 sheet of the Cyt1A protein enhanced the cytotoxicity against the lung epithelial cancer cells. Such novel Cyt1A protein with high cytotoxicity against lung cancer cells has been characterized and reported through this study

    Study of the degradation process of ofloxacin with free chlorine by using ESI-LCMSMS: Kinetic study, by-products formation pathways and fragmentation mechanisms

    No full text
    International audienceThis study was conducted to gain a better understanding of the fate of fluoroquinolone antibacterial ofloxacin (OFX) which is the free available chlorine (FAC) in order to determine its effect during water chlorination process. The Direct reactions of FAC with OFX were quite rapid. A half-life of 7.7 s was measured under pseudo-first order conditions in the presence of an excess of total chlorine ([FAC]0 = 13 μM and [OFX]0 = 0.55 μM at pH 7.2 and 20 °C in buffered reagent water. Free chlorine reactions rates were of first-order type in both substrate and oxidant with specific second-order rate constants of 6.8 × 103 M-1 s-1. No induced back reactions or other interference by using thiosulfate to stop the chlorination reaction was shown. The seven products of the reaction were determined by using the LC/MS/MS analysis. Structures were investigated due to the explication of transitions obtained at different CID energies by LC-ESI-MS/MS. Pathways of the formations of these by-products were presented in this study and pathways of the fragmentations of pseudo molecular ions of the structures proposed were presented in supplementary files

    Characteristic MicroRNAs Linked to Dysregulated Metabolic Pathways in Qatari Adult Subjects With Obesity and Metabolic Syndrome.

    No full text
    Obesity-associated dysglycemia is associated with metabolic disorders. MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with clinical features in obese Qatari individuals. We analyzed a dataset of 39 age-matched patients that includes 18 subjects with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We measured 754 well-characterized human microRNAs (miRNAs) and identified differentially expressed miRNAs along with their significant associations with clinical markers in these patients. A total of 64 miRNAs were differentially expressed between metabolically healthy obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64 miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome. Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were significantly associated with cholesterol, whereas miR-130a-3p was significantly associated with LDL. Additionally, miR-652-3p's differential expression correlated significantly with HDL and creatinine. MicroRNAs associated with metabolic syndrome in obese subjects may have a pathophysiologic role and can serve as markers for obese individuals predisposed to various metabolic diseases like diabetes

    Dysregulated Metabolic Pathways in Subjects with Obesity and Metabolic Syndrome

    Get PDF
    Background: Obesity coexists with variable features of metabolic syndrome, which is associated with dysregulated metabolic pathways. We assessed potential associations between serum metabolites and features of metabolic syndrome in Arabic subjects with obesity. Methods: We analyzed a dataset of 39 subjects with obesity only (OBO, n = 18) age-matched to subjects with obesity and metabolic syndrome (OBM, n = 21). We measured 1069 serum metabolites and correlated them to clinical features. Results: A total of 83 metabolites, mostly lipids, were significantly different (p < 0.05) between the two groups. Among lipids, 22 sphingomyelins were decreased in OBM compared to OBO. Among non-lipids, quinolinate, kynurenine, and tryptophan were also decreased in OBM compared to OBO. Sphingomyelin is negatively correlated with glucose, HbA1C, insulin, and triglycerides but positively correlated with HDL, LDL, and cholesterol. Differentially enriched pathways include lysine degradation, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, fructose and mannose metabolism, and galactose metabolism. Conclusions: Metabolites and pathways associated with chronic inflammation are differentially expressed in subjects with obesity and metabolic syndrome compared to subjects with obesity but without the clinical features of metabolic syndrome

    EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells

    No full text
    International audienceImatinib, the first-generation tyrosine kinase inhibitor, revolutionized the therapeutic management of chronic myeloid leukemia (CML) and is highly effective in inducing remissions and prolonging the survival of CML patients. However, one-third of patients develop intolerance or resistance to treatment, and CML stem cells remain insensitive to this therapy, leading almost inevitably to relapse upon treatment discontinuation. Imidazoquinoxalines are imiquimod derivatives that induce growth inhibition and induction of caspase-dependent apoptosis in melanoma and T-cell lymphoma cells. We investigated the effects of EAPB0203 and EAPB0503, two novel imidazoquinoxaline derivatives, on human CML cell lines and showed that they induced a dose-dependent and time-dependent cell growth inhibition. EAPB0503 proved more potent and induced a specific cell cycle arrest in mitosis in CML cells and direct activation of apoptosis as evidenced by increased pre-G0 population, breakdown of mitochondrial membrane potential, PARP cleavage, and DNA breakage. Interestingly, EAPB0503 decreased BCR-ABL oncoprotein levels. The combination of EAPB0503 with imatinib synergized to inhibit the proliferation of CML cells, and most importantly, EABP0503 inhibited the proliferation of imatinib-resistant CML cells, offering promising therapeutic modalities that would circumvent resistance to tyrosine kinase inhibitors and improve the prognosis of CML
    corecore