11 research outputs found

    SENSITIVITY ANALYSIS OF SUPPORT VECTOR MACHINE PREDICTIONS OF PASSIVE MICROWAVE BRIGHTNESS TEMPERATURES OVER SNOW-COVERED TERRAIN IN HIGH MOUNTAIN ASIA

    Get PDF
    Spatial and temporal variation of snow in High Mountain Asia is very critical as it determines contribution of snowmelt to the freshwater supply of over 136 million people. Support vector machine (SVM) prediction of passive microwave brightness temperature spectral difference (ΔTb) as a function of NASA Land Information System (LIS) modeled geophysical states is investigated through a sensitivity analysis. AMSRE ΔTb measurements over snow-covered areas in the Indus basin are used for training the SVMs. Sensitivity analysis results conform with the known first-order physics. LIS input states that are directly linked to physical temperature demonstrate relatively higher sensitivity. Accuracy of LIS modeled states is further assessed through a comparative analysis between LIS derived and Advanced Scatterometer based Freeze/Melt/Thaw categorical datasets. Highest agreement of 22%, between the two datasets, is observed for freeze state. Analyses results provide insight into LIS’s land surface modeling ability over the Indus Basin

    Analyzing the Knock-on Impacts of 2022 Floods on Rabi 2023 Using Remote Sensing and Field Surveys

    Full text link
    While the world's attention is focused on immediate relief and rescue operations for the affectees of the current floods in Pakistan, knock-on effects are expected to play further havoc with the country's economy and food security in the coming months. Significant crop yield losses had already occurred for Winter (Rabi) 2021-22 due to a heatwave earlier in the year and estimates for the Summer (Kharif) 2022 crop damage due to flood inundation have already been determined to be very high. With the next sowing season already upon the flood affectees, there is a big question mark over the resumption of agricultural activity in disaster-struck districts. This study is aimed at analyzing the range of influences of the 2022 floods on the upcoming winter (Rabi) crop. Satellite-based remote sensing data, state-of-the-art Earth system models, and field observations will be leveraged to estimate the impacts of the flood on the resumption of agricultural activity in the most impacted districts of Southern Punjab, Sindh, and Baluchistan. The field surveys are conducted during multiple visits to the study area to maximize the monitoring of on-ground conditions and provide a larger validation dataset for the satellite-based inundation and crop classification maps. The project leverages on the expertise and previous experiences of the LUMS team in performing satellite-based land/crop classification, estimation of soil moisture levels for irrigation activity, and determining changes in land-use patterns for detecting key agricultural activities. Delays in the sowing of the winter crop and its effects on crop-yield were analyzed through this study

    Estimating terrestrial water budget components across high mountain Asia using remote sensing, data assimilation, and machine learning

    No full text
    Contemporary studies have predicted a vulnerable future for key water budget components across high mountain Asia (HMA) and the adjoining areas. Considering the regional population and its dependence on agrarian economies, it is imperative that efforts be channelized towards improving the estimation of the hydrologic cycle across HMA. In this study, data assimilation methods were employed to assimilate remotely-sensed observations into land surface models to improve snow mass, soil moisture, and runoff estimates. The NASA Land Information System was used to simulate the hydrologic cycle across HMA and the adjoining areas using the Noah-MP land surface model. In an effort to improve snow mass estimation, passive microwave brightness temperature spectral differences (∆Tb) from the Advanced Microwave Scanning Radiometer-2 (AMSR2) were assimilated into Noah-MP snow mass estimates. Support vector machine regression, a supervised machine learning technique, was used as the observation operator to map the geophysical states into the observed ∆Tb space. Evaluation of the assimilation routine highlighted the decrease in domain-wide snow mass bias. The assimilation framework proved to be more effective during the (dry) snow accumulation season resulting in decreased snow mass bias and RMSE at 76% and 58% of the comparative locations, respectively. Diagnostic metrics such as the innovation sequence were studied to assess the snow-related observation error characteristics of AMSR2 ∆Tb. To improve the spatiotemporal variability of modeled soil moisture estimates, Soil Moisture Active Passive (SMAP) soil moisture retrievals were assimilated into Noah-MP. Assimilation was carried out using bias corrected (via CDF-matching) and raw (without CDF-matching) SMAP retrievals. Comparison against in-situ soil moisture measurements across the Tibetan Plateau highlighted the improvement in modeled soil moisture with reductions in mean bias and RMSE by 8.4% and 9.4%, respectively, even though assimilation occurred during <10% of the total study period across the Tibetan Plateau. More importantly, SMAP retrieval assimilation corrected biases that were generated due to unmodeled hydrologic phenomenon (i.e., surface irrigation associated with agricultural production). Improvements in soil moisture translated into changes in the modeled evapotranspiration. Further, the improvement in fine-scale (0.05 degree) modeled soil moisture estimates by assimilating coarse-scale soil moisture retrievals (36 km) indicated the potential of the described methodology for soil moisture estimation over data scarce regions. Soil moisture assimilation also increased the gridded total runoff (particularly baseflow) and volumetric streamflow across irrigated areas; however, limited impact was noted in terms of volumetric streamflow along high-flow river tributaries. In this study, data assimilation was leveraged to advance contemporary land surface modeling of the terrestrial water budget components across HMA. The study objectives explored how assimilation systems could be used to improve critical geophysical state estimation for a better informed future of regional water resources

    SMAP soil moisture assimilated Noah-MP model output

    No full text
    The Noah-MP land surface model was run on an equidistant cylindrical grid at a spatial resolution of 0.05 degree x 0.05 degree from 2015 to 2020. Open loop and data assimilation (with and without CDF-matching) runs were executed based on the methodology described in Ahmad et al. (2021) using MERRA2 and IMERG precipitation boundary conditions. The NetCDF files archived here were reprocessed to include the model output states discussed in the paper only. These include: 1) surface soil moisture, 2) rootzone soil moisture, 3) evapotranspiration, and 4) gross primary production. References: Ahmad, J. A., Forman, B. A., and Kumar, S. V. (2021), SMAP retrieval assimilation improves soil moisture estimation across irrigated areas in South Asia, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-460.The data archived here includes the NASA Noah-MP (version 4.0.1) land surface model output used in the investigation of the impact of passive microwave-based soil moisture retrieval assimilation on soil moisture estimation in South Asia (Ahmad et al., 2021). SMAP soil moisture retrievals are assimilated into the Noah-MP land surface model to improve the estimation of soil moisture and other related states. The open loop (OL) represents Noah-MP’s modeling capabilities using MERRA2 and IMERG precipitation. Two different types of data assimilation runs were executed using the MERRA2 and IMERG precipitation boundary conditions, i.e., with CDF-matching (DA-CDF) and without CDF matching (DA-NoCDF). The key findings in this paper include: 1) assimilation results without any CDF-matching yielded the lowest error in estimated soil moisture, 2) the best goodness-of-fit statistics were achieved for the IMERG-forced DA-NoCDF soil moisture experiment, 3) biases associated with unmodeled hydrologic processes such as irrigation were corrected via assimilation, and 4) the highest influence of assimilation was observed across croplands.NASA Understanding Changes in High Mountain Asia (Contract# 80NSSC2OK1531

    Maximizing Thermal Energy Recovery from Drinking Water for Cooling Purpose

    No full text
    Drinking water distribution networks (DWDNs) have a huge potential for cold thermal energy recovery (TED). TED can provide cooling for buildings and spaces with high cooling requirements as an alternative for traditional cooling, reduce usage of electricity or fossil fuel, and thus TED helps reduce greenhouse gas (GHG) emissions. There is no research on the environmental assessment of TED systems, and no standards are available for the maximum temperature limit (Tmax) after recovery of cold. During cold recovery, the water temperature increases, and water at the customer’s tap may be warmer as a result. Previous research showed that increasing Tmax up to 30 °C is safe in terms of microbiological risks. The present research was carried out to determine what raising Tmax would entail in terms of energy savings, GHG emission reduction and water temperature dynamics during transport. For this purpose, a full-scale TED system in Amsterdam was used as a benchmark, where Tmax is currently set at 15 °C. Tmax was theoretically set at 20, 25 and 30 °C to calculate energy savings and CO2 emission reduction and for water temperature modeling during transport after cold recovery. Results showed that by raising Tmax from the current 15 °C to 20, 25 and 30 °C, the retrievable cooling energy and GHG emission reduction could be increased by 250, 425 and 600%, respectively. The drinking water temperature model predicted that within a distance of 4 km after TED, water temperature resembles that of the surrounding subsurface soil. Hence, a higher Tmax will substantially increase the TED potential of DWDN while keeping the same comfort level at the customer’s tap

    Exploring the Utility of Machine Learning-Based Passive Microwave Brightness Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia

    No full text
    This study explores the use of a support vector machine (SVM) as the observation operator within a passive microwave brightness temperature data assimilation framework (herein SVM-DA) to enhance the characterization of snow water equivalent (SWE) over High Mountain Asia (HMA). A series of synthetic twin experiments were conducted with the NASA Land Information System (LIS) at a number of locations across HMA. Overall, the SVM-DA framework is effective at improving SWE estimates (~70% reduction in RMSE relative to the Open Loop) for SWE depths less than 200 mm during dry snowpack conditions. The SVM-DA framework also improves SWE estimates in deep, wet snow (~45% reduction in RMSE) when snow liquid water is well estimated by the land surface model, but can lead to model degradation when snow liquid water estimates diverge from values used during SVM training. In particular, two key challenges of using the SVM-DA framework were observed over deep, wet snowpacks. First, variations in snow liquid water content dominate the brightness temperature spectral difference (TB) signal associated with emission from a wet snowpack, which can lead to abrupt changes in SWE during the analysis update. Second, the ensemble of SVM-based predictions can collapse (i.e., yield a near-zero standard deviation across the ensemble) when prior estimates of snow are outside the range of snow inputs used during the SVM training procedure. Such a scenario can lead to the presence of spurious error correlations between SWE and TB, and as a consequence, can result in degraded SWE estimates from the analysis update. These degraded analysis updates can be largely mitigated by applying rule-based approaches. For example, restricting the SWE update when the standard deviation of the predicted TB is greater than 0.05 K helps prevent the occurrence of filter divergence. Similarly, adding a thin layer (i.e., 5 mm) of SWE when the synthetic TB is larger than 5 K can improve SVM-DA performance in the presence of a precipitation dry bias. The study demonstrates that a carefully constructed SVM-DA framework cognizant of the inherent limitations of passive microwave-based SWE estimation holds promise for snow mass data assimilation
    corecore