389 research outputs found

    Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    Get PDF
    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system

    Frequency-dependent drag from quantum turbulence produced by quartz tuning forks in superfluid He4

    Get PDF
    We have measured the drag force from quantum turbulence on a series of quartz tuning forks in superfluid helium. The tuning forks were custom made from a 75-μm-thick wafer. They have identical prong widths and prong spacings, but different lengths to give different resonant frequencies. We have used both the fundamental and overtone flexure modes to probe the turbulent drag over a broad range of frequencies f=ω/2π from 6.5 to 300 kHz. Optical measurements show that the velocity profiles of the flexure modes are well described by a cantilever beam model. The critical velocity for the onset of quantum turbulence at low temperatures is measured to be vc≈0.7κω−−−−−√ where κ is the circulation quantum. The drag from quantum turbulence shows a small frequency dependence when plotted against the scaled velocity v/v

    Probing Bogoliubov Quasiparticles in Superfluid 3He with a ‘Vibrating-Wire Like’ MEMS Device

    Get PDF
    International audienceWe have measured the interaction between superfluid 3 He-B and a micro-machined goalpost-shaped device at temperatures below 0.2 T c. The measured damping follows well the theory developed for vibrating wires, in which the An-dreev reflection of quasiparticles in the flow field around the moving structure leads to a nonlinear frictional force. At low velocities the damping force is proportional to velocity while it tends to saturate for larger excitations. Above a velocity of 2.6 mms −1 the damping abruptly increases, which is interpreted in terms of Cooper-pair breaking. Interestingly, this critical velocity is significantly lower than reported with other mechanical probes immersed in superfluid 3 He. Furthermore , we report on a nonlinear resonance shape for large motion amplitudes that we interpret as an inertial effect due to quasiparticle friction, but other mechanisms could possibly be invoked as well. PACS numbers: 85.85.+j, 67.30.H-, 67.30.e

    A quasiparticle detector for imaging quantum turbulence in superfluid 3He-B

    Get PDF
    We describe the development of a two-dimensional quasiparticle detector for use in visualising quantum turbulence in superfluid 3He-B at ultra-low temperatures. The detector consists of a 5×5 matrix of pixels, each a 1mm diameter hole in a copper block containing aminiature quartz tuning fork. The damping on each fork provides a measure of the local quasiparticle flux. The detector is illuminated by a beam of ballistic quasiparticles generated from a nearby black-body radiator. A comparison of the damping on the different forks provides a measure of the cross-sectional profile of the beam. Further, we generate a tangle of vortices (quantum turbulence) in the path of the beam using a vibrating wire resonator. The vortices cast a shadow onto the face of the detector due to the Andreev reflection of quasiparticles in the beam. This allows us to image the vortices and to investigate their dynamics. Here we give details of the design and construction of the detector and show some preliminary results for one row of pixels which demonstrates its successful application tomeasuring quasiparticle beams and quantum turbulence

    Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    Get PDF
    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regional, well-mixed aerosols are challenged by changing wind directions, disrupted flow fields caused by structures, varied surface temperatures, and the episodic nature of the sources found at these facilities. We describe a three-wavelength lidar-based method, which, when added to a standard point sampler array, provides unambiguous measurement and characterization of the particulate emissions from agricultural production operations in near real time. Point-sampled data are used to provide the aerosol characterization needed for the particle concentration and size fraction calibration, while the lidar provides 3D mapping of particulate concentrations entering, around, and leaving the facility. Differences between downwind and upwind measurements provide an integrated aerosol concentration profile, which, when multiplied by the wind speed profile, produces the facility source flux. This approach assumes only conservation of mass, eliminating reliance on boundary layer theory. We describe the method, examine measurement error, and demonstrate the approach using data collected over a range of agricultural operations, including a swine grow-finish operation, an almond harvest, and a cotton gin emission study

    Retrieval of Physical Properties of Particulate Emission from Animal Feeding Operations Using Three-Wavelength Elastic Lidar Measurements

    Get PDF
    Agricultural operations produce a variety of particulates and gases that influence ambient air quality. Lidar (LIght Detection And Ranging) technology provides a means to derive quantitative information of particulate spatial distribution and optical/physical properties over remote distances. A three-wavelength scanning lidar system built at the Space Dynamic Laboratory (SDL) is used to extract optical parameters of particulate matter and to convert these optical properties to physical parameters of particles. This particulate emission includes background aerosols, emissions from the agricultural feeding operations, and fugitive dust from the road. Aerosol optical parameters are retrieved using the widely accepted solution proposed by Klett. The inversion algorithm takes advantage of measurements taken simultaneously at three lidar wavelengths (355, 532, and 1064 nm) and allows us to estimate the particle size distribution. A bimodal lognormal particle size distribution is assumed and mode radius, width of the distribution, and total number density are estimated, minimizing the difference between calculated and measured extinction coefficients at the three lidar wavelengths. The results of these retrievals are then compared with simultaneous point measurements at the feeding operation site, taken with standard equipment including optical particle counters, portable PM10 and PM2.5 ambient air samplers, multistage impactors, and an aerosol mass spectrometer

    Designing touch-enabled electronic flight bags in SAR helicopter operations

    Full text link
    In order to benefit from potential reduced operational costs and crew workload airlines are increasingly interested in touchscreen-based Electronic Flight Bags (EFB). This paper focuses on the specific domain of Search and Rescue (SAR) Helicopters. A first set of results aiming to explore and understand potential benefits and challenges of an EFB in a SAR environment will be presented. A review of related work, operational observations and interviews with pilots were conducted to understand and specify the use context. Digital Human Modelling (DHM) software was used to determine physical constraints of an EFB in this type of flight deck. A scenario was developed which will be used in future to define features, content and functionality that a SAR pilot may wish to see in an EFB. Developed initial interface design guidelines are presented
    corecore