2,946 research outputs found
Adaptive Controller Placement for Wireless Sensor-Actuator Networks with Erasure Channels
Wireless sensor-actuator networks offer flexibility for control design. One
novel element which may arise in networks with multiple nodes is that the role
of some nodes does not need to be fixed. In particular, there is no need to
pre-allocate which nodes assume controller functions and which ones merely
relay data. We present a flexible architecture for networked control using
multiple nodes connected in series over analog erasure channels without
acknowledgments. The control architecture proposed adapts to changes in network
conditions, by allowing the role played by individual nodes to depend upon
transmission outcomes. We adopt stochastic models for transmission outcomes and
characterize the distribution of controller location and the covariance of
system states. Simulation results illustrate that the proposed architecture has
the potential to give better performance than limiting control calculations to
be carried out at a fixed node.Comment: 10 pages, 8 figures, to be published in Automatic
Performance of a large limited streamer tube cell in drift mode
The performance of a large (3x3 ) streamer tube cell in drift mode is
shown. The detector space resolution has been studied using cosmic muons
crossing an high precision silicon telescope. The experimental results are
compared with a GARFIELD simulation.Comment: 18 pages, 7 figures. Accepted by Nucl. Instr. and Methods
Search for Magnetic Monopoles Trapped in Matter
There have been many searches for magnetic monopoles in flight, but few for
monopoles in matter. We have searched for magnetic monopoles in meteorites,
schists, ferromanganese nodules, iron ores and other materials. The detector
was a superconducting induction coil connected to a SQUID (Superconducting
Quantum Interference Device) with a room temperature bore 15 cm in diameter. We
tested a total of more than 331 kg of material including 112 kg of meteorites.
We found no monopole and conclude the overall monopole/nucleon ratio in the
samples is with a 90\% confidence level.Comment: 6 pages, rev tex, no figure
MIMAC : A micro-tpc matrix for directional detection of dark matter
Directional detection of non-baryonic Dark Matter is a promising search
strategy for discriminating WIMP events from background. However, this strategy
requires both a precise measurement of the energy down to a few keV and 3D
reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC
project has been developed. It is based on a gaseous micro-TPC matrix, filled
with CF4 and CHF3. The first results on low energy nuclear recoils (H, F)
obtained with a low mono-energetic neutron field are presented. The discovery
potential of this search strategy is discussed and illustrated by a realistic
case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for
low energy rare event detection, Paris, France, Dec. 2010. To appear in
Journal of Physic
Antimatter research in Space
Two of the most compelling issues facing astrophysics and cosmology today are
to understand the nature of the dark matter that pervades the universe and to
understand the apparent absence of cosmological antimatter. For both issues,
sensitive measurements of cosmic-ray antiprotons and positrons, in a wide
energy range, are crucial. Many different mechanisms can contribute to
antiprotons and positrons production, ranging from conventional reactions up to
exotic processes like neutralino annihilation. The open problems are so
fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that
experiments in this field will probably be of the greatest interest in the next
years. Here we will summarize the present situation, showing the different
hypothesis and models and the experimental measurements needed to lead to a
more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray
Symposium, Moscow, July 2002, submitted to Journal of Physics
Improved Experimental Limits on the Production of Magnetic Monopoles
We present new limits on low mass accelerator-produced point-like Dirac
magnetic monopoles trapped and bound in matter surrounding the D\O collision
region of the Tevatron at Fermilab (experiment E-882). In the context of a
Drell-Yan mechanism, we obtain cross section limits for the production of
monopoles with magnetic charge values of 1, 2, 3, and 6 times the minimum Dirac
charge of the order of picobarns, some hundred times smaller than found in
similar previous Fermilab searches. Mass limits inferred from these cross
section limits are presented.Comment: 5 pages, 4 eps figures, REVTe
Limits on Production of Magnetic Monopoles Utilizing Samples from the DO and CDF Detectors at the Tevatron
We present 90% confidence level limits on magnetic monopole production at the
Fermilab Tevatron from three sets of samples obtained from the D0 and CDF
detectors each exposed to a proton-antiproton luminosity of
(experiment E-882). Limits are obtained for the production cross-sections and
masses for low-mass accelerator-produced pointlike Dirac monopoles trapped and
bound in material surrounding the D0 and CDF collision regions. In the absence
of a complete quantum field theory of magnetic charge, we estimate these limits
on the basis of a Drell-Yan model. These results (for magnetic charge values of
1, 2, 3, and 6 times the minimum Dirac charge) extend and improve previously
published bounds.Comment: 18 pages, 17 figures, REVTeX
Antimatter in the Universe
Cosmological models which predict a large amount of antimatter in the
Universe are reviewed. Observational signatures and searches for cosmic
antimatter are briefly considered. A short discussion of new long range forces
which might be associated with matter and antimatter is presented.Comment: 17 pages + 2 figure
Search for nuclearites with the SLIM detector
We discuss the properties of cosmic ray nuclearites, from the point of view
of their search with large nuclear track detector arrays exposed at different
altitudes, in particular with the SLIM experiment at the Chacaltaya high
altitude lab (5290 m a.s.l.). We present calculations concerning their
propagation in the Earth atmosphere and discuss their possible detection with
CR39 and Makrofol nuclear track detectors.Comment: 11 pages, 6 figure
- âŠ