26 research outputs found

    Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adhesion and successful colonization of bacteria onto solid surfaces play a key role in biofilm formation. The initial adhesion and the colonization of bacteria may differ between the various types of surfaces found in oral cavity. Therefore, it is conceivable that diverse biofilms are developed on those various surfaces. The aim of the study was to investigate the molecular modifications occurring during <it>in vitro </it>biofilm development of <it>Streptococcus mutans </it>UA159 on several different dental surfaces.</p> <p>Results</p> <p>Growth analysis of the immobilized bacterial populations generated on the different surfaces shows that the bacteria constructed a more confluent and thick biofilms on a hydroxyapatite surface compared to the other tested surfaces. Using DNA-microarray technology we identified the differentially expressed genes of <it>S. mutans</it>, reflecting the physiological state of biofilms formed on the different biomaterials tested. Eight selected genes were further analyzed by real time RT-PCR. To further determine the impact of the tested material surfaces on the physiology of the bacteria, we tested the secretion of AI-2 signal by <it>S. mutans </it>embedded on those biofilms. Comparative transcriptome analyses indicated on changes in the <it>S. mutans </it>genome in biofilms formed onto different types of surfaces and enabled us to identify genes most differentially expressed on those surfaces. In addition, the levels of autoinducer-2 in biofilms from the various tested surfaces were different.</p> <p>Conclusions</p> <p>Our results demonstrate that gene expression of <it>S. mutans </it>differs in biofilms formed on tested surfaces, which manifest the physiological state of bacteria influenced by the type of surface material they accumulate onto. Moreover, the stressful circumstances of adjustment to the surface may persist in the bacteria enhancing intercellular signaling and surface dependent biofilm formation.</p

    Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian

    Get PDF
    Background: In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. Results: We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three factors to determine how abiotic stressors impact toxin expression for individuals collected across this species’ range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate differently their venom production levels. Conclusions: We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and significant environmental differences between their habitats.publishedVersio

    Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone

    No full text
    Background: Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an ``explosive'' organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results: In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1-cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions: Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development and evolution of cnidocytes

    Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian

    No full text
    Background: In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. Results: We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three factors to determine how abiotic stressors impact toxin expression for individuals collected across this species’ range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate differently their venom production levels. Conclusions: We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and significant environmental differences between their habitats

    The Middle Eastern Cousin: Comparative Venomics of Daboia palaestinae and Daboia russelii

    No full text
    Among the medically most important snakes in the world, the species belonging to the genus Daboia have been attributed to the highest number of human envenomings, deaths and disabilities. Given their significant clinical relevance, the venoms of Russell&rsquo;s vipers (D. russelii and D. siamensis) have been the primary focus of research. In contrast, the composition, activity, ecology and evolution of venom of its congener, the Palestine viper (D. palaestinae), have remained largely understudied. Therefore, to unravel the factors responsible for the enhanced medical relevance of D. russelii in comparison to D. palaestinae, we comparatively evaluated their venom proteomes, biochemical activities, and mortality and morbidity inflicting potentials. Furthermore, the synthesis and regulation of venom in snakes have also remained underinvestigated, and the relative contribution of each venom gland remains unclear. We address this knowledge gap by sequencing the tissue transcriptomes of both venom glands of D. palaestinae, and comparatively evaluating their contribution to the secreted venom concoction. Our findings highlight the disparity in the venom composition, function and toxicities of the two Daboia species. We also show that toxin production is not partitioned between the two venom glands of D. palaestinae

    Characterization of the piRNA pathway during development of the sea anemone <i>Nematostella vectensis</i>

    No full text
    <p>PIWI-interacting RNAs (piRNAs) and associated proteins comprise a conserved pathway for silencing transposons in metazoan germlines. piRNA pathway components are also expressed in multipotent somatic stem cells in various organisms. piRNA functions have been extensively explored in bilaterian model systems, however, comprehensive studies in non-bilaterian phyla remain limited. Here we investigate the piRNA pathway during the development of <i>Nematostella vectensis</i>, a well-established model system belonging to Cnidaria, the sister group to Bilateria. To date, no population of somatic stem cells has been identified in this organism, despite its long life-span and regenerative capacities that require a constant cell-renewal. We show that <i>Nematostella</i> piRNA pathway components are broadly expressed in early developmental stages, while piRNAs themselves show differential expression, suggesting specific developmental roles of distinct piRNA families. In adults, piRNA associated proteins are enriched in the germline but also expressed in somatic cells, indicating putative stem cell properties. Furthermore, we provide experimental evidence that <i>Nematostella</i> piRNAs cleave transposable elements as well as protein-coding genes. Our results demonstrate that somatic expression of piRNA associated proteins as well as the roles of piRNAs in transposon repression and gene regulation are likely ancestral features that evolved before the split between Cnidaria and Bilateria.</p
    corecore