2,085 research outputs found

    Multipartite hypergraphs achieving equality in Ryser's conjecture

    Get PDF
    A famous conjecture of Ryser is that in an rr-partite hypergraph the covering number is at most r−1r-1 times the matching number. If true, this is known to be sharp for rr for which there exists a projective plane of order r−1r-1. We show that the conjecture, if true, is also sharp for the smallest previously open value, namely r=7r=7. For r∈{6,7}r\in\{6,7\}, we find the minimal number f(r)f(r) of edges in an intersecting rr-partite hypergraph that has covering number at least r−1r-1. We find that f(r)f(r) is achieved only by linear hypergraphs for r≤5r\le5, but that this is not the case for r∈{6,7}r\in\{6,7\}. We also improve the general lower bound on f(r)f(r), showing that f(r)≥3.052r+O(1)f(r)\ge 3.052r+O(1). We show that a stronger form of Ryser's conjecture that was used to prove the r=3r=3 case fails for all r>3r>3. We also prove a fractional version of the following stronger form of Ryser's conjecture: in an rr-partite hypergraph there exists a set SS of size at most r−1r-1, contained either in one side of the hypergraph or in an edge, whose removal reduces the matching number by 1.Comment: Minor revisions after referee feedbac

    Magnetization patterns in ferromagnetic nano-elements as functions of complex variable

    Full text link
    Assumption of certain hierarchy of soft ferromagnet energy terms, realized in small enough flat nano-elements, allows to obtain explicit expressions for their magnetization distributions. By minimising the energy terms sequentially, from most to the least important, magnetization distributions are expressed as solutions of Riemann-Hilbert boundary value problem for a function of complex variable. A number of free parameters, corresponding to positions of vortices and anti-vortices, still remain in the expression. These parameters can be found by computing and minimizing the total magnetic energy of the particle with no approximations. Thus, the presented approach is a factory of realistic Ritz functions for analytical micromagnetic calculations. These functions are so versatile, that they may even find applications on their own (e.g. for fitting magnetic microscopy images). Examples are given for multi-vortex magnetization distributions in circular cylinder, and for 2-dimensional domain walls in thin magnetic strips.Comment: 4 pages, 3 figures, 2 refs added, fixed typo

    Magnetostatic bias in multilayer microwires: theory and experiments

    Full text link
    The hysteresis curves of multilayer microwires consisting of a soft magnetic nucleus, intermediate non-magnetic layers, and an external hard magnetic layer are investigated. The magnetostatic interaction between magnetic layers is proved to give rise to an antiferromagnetic-like coupling resulting in a magnetostatic bias in the hysteresis curves of the soft nucleus. This magnetostatic biasing effect is investigated in terms of the microwire geometry. The experimental results are interpreted considering an analytical model taking into account the magnetostatic interaction between the magnetic layers.Comment: 6 pages, 7 figure

    Domain wall motion in thin ferromagnetic nanotubes: Analytic results

    Get PDF
    Dynamics of magnetization domain walls (DWs) in thin ferromagnetic nanotubes subject to weak longitudinal external fields is addressed analytically in the regimes of strong and weak penalization. Exact solutions for the DW profiles and formulas for the DW propagation velocity are derived in both regimes. In particular, the DW speed is shown to depend nonlinearly on the nanotube radius

    Finite-size versus Surface effects in nanoparticles

    Full text link
    We study the finite-size and surface effects on the thermal and spatial behaviors of the magnetisation of a small magnetic particle. We consider two systems: 1) A box-shaped isotropic particle of simple cubic structure with either periodic or free boundary conditions. This case is treated analytically using the isotropic model of D-component spin vectors in the limit D→∞D\to \infty, including the magnetic field. 2) A more realistic particle (γ\gamma -Fe2_{2}O3_{3}) of ellipsoidal (or spherical) shape with open boundaries. The magnetic state in this particle is described by the anisotropic classical Dirac-Heisenberg model including exchange and dipolar interactions, and bulk and surface anisotropy. This case is dealt with by the classical Monte Carlo technique. It is shown that in both systems finite-size effects yield a positive contribution to the magnetisation while surface effects render a larger and negative contribution, leading to a net decrease of the magnetisation of the small particle with respect to the bulk system. In the system 2) the difference between the two contributions is enhanced by surface anisotropy. The latter also leads to non saturation of the magnetisation at low temperatures, showing that the magnetic order in the core of the particle is perturbed by the magnetic disorder on the surface. This is confirmed by the profile of the magnetisation.Comment: 6 pages of RevTex including 4 Figures, invited paper to 3rd EuroConference on Magnetic Properties of Fine Nanoparticles, Barcelona, October 9

    Scaling relations for magnetic nanoparticles

    Full text link
    A detailed investigation of the scaling relations recently proposed by [J. d'Albuquerque e Castro, D. Altbir, J. C. Retamal, and P. Vargas, Phys. Rev. Lett. 88, 237202 (2002)] to study the magnetic properties of nanoparticles is presented. Analytical expressions for the total energy of three characteristic internal configurations of the particles are obtained, in terms of which the behavior of the magnetic phase diagram for those particles upon scaling of the exchange interaction is discussed. The exponent η\eta in scaling relations is shown to be dependent on the geometry of the vortex core, and results for specific cases are presented.Comment: 6 pages, 4 figure

    Do You Hear that Beat? Expectation Versus Uncertainty as Influenced by Background Noise

    Get PDF
    AbstractThe human ability to perceive and synchronize to musical beat has communicative importance beyond the purely musical context. Entrainment to the beat hints at more general deductive and predictive mechanisms. Evidence for beat entrainment and its related mechanisms was found in behavioural as well as neuroimaging studies. However, the mechanisms behind this phenomenon are not yet fully understood, and in particular, it is not known whether beat entrainment relies on lasting, sensory- specific cortical activity. To answer this question, we asked participants to listen to sequences of isochronous and non- isochronous beats. The sequences faded above and below an individual participant's hearing level, into either silence or background noise. Participants were asked to press a button for as long as they heard the sequence, and let go once they no longer hear it. Results show a consistently lengthened button press for isochronous sequences, beyond the actual fade-out period (leptokurtic, slim fit). The release delay to the non-isochronous sequences was instead characterized by uncertainty (platicurtic, broad fit). Background noise appeared to improve the isochronous sequence ending detection, possibly by raising the level of attention to sounds. These results support the view of entrainment mechanism as an internal, self-sustaining circuit. The activity of such a mechanism, driven by temporal regularity, together with the gradual disappearance of the beat, might create an illusory perception of beat continuation

    Magnetization reversal of ferromagnetic nanodisc placed above a superconductor

    Full text link
    Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of superconductor on magnetization distribution in the nanomagnet we have used London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect.Comment: 8 pages, 9 figure

    Two Modes of Magnetization Switching in a Simulated Iron Nanopillar in an Obliquely Oriented Field

    Full text link
    Finite-temperature micromagnetics simulations are employed to study the magnetization-switching dynamics driven by a field applied at an angle to the long axis of an iron nanopillar. A bi-modal distribution in the switching times is observed, and evidence for two competing modes of magnetization-switching dynamics is presented. For the conditions studied here, temperature T=20T = 20 K and the reversal field 3160 Oe at an angle of 75∘^\circ to the long axis, approximately 70% of the switches involve unstable decay (no free-energy barrier) and 30% involve metastable decay (a free-energy barrier is crossed). The latter are indistinguishable from switches which are constrained to start at a metastable free-energy minimum. Competition between unstable and metastable decay could greatly complicate applications involving magnetization switches near the coercive field.Comment: 19 pages, 7 figure

    Vortex core size in interacting cylindrical nanodot arrays

    Full text link
    The effect of dipolar interactions among cylindrical nanodots, with a vortex-core magnetic configuration, is analyzed by means of analytical calculations. The cylinders are placed in a N x N square array in two configurations - core oriented parallel to each other and with antiparallel alignment between nearest neighbors. Results comprise the variation in the core radius with the number of interacting dots, the distance between them and dot height. The dipolar interdot coupling leads to a decrease (increase) of the core radius for parallel (antiparallel) arrays
    • …
    corecore