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Abstract — Dynamics of magnetization domain walls (DWs) in thin ferromagnetic nanotubes
subject to weak longitudinal external fields is addressed analytically in the regimes of strong and
weak penalization. Exact solutions for the DW profiles and formulas for the DW propagation
velocity are derived in both regimes. In particular, the DW speed is shown to depend nonlinearly

on the nanotube radius.

The problem of controlled manipulation of magneti-
zation domains in quasi-one-dimensional ferromagnetic
nanostructures is of paramount technological importance
in designing new generation memory devices [1-3] and of
fundamental interest in the vibrant areas of micromag-
netics and spintronics. To date, substantial theoretical
progress has been achieved in understanding the dynam-
ics of domain walls (DWs) in nanowires and nanostrips
under the influence of applied magnetic fields [4-16] and
spin-polarized electric currents [16-22]. Nevertheless, the
search for schemes and regimes allowing fast and energy
efficient DW propagation actively continues.

Ferromagnetic nanotubes have been proposed as an al-
ternative device geometry for carrying and manipulating
DWs [23,24], and are attracting considerable attention not
only for applications [25,26] but also from the point of view
of basic theory and numerical simulations [27-32]. A key
advantage of the nanotube structure is greater DW stabil-
ity under strong fields [32] as compared to wire and strip
geometries [4,33], leading to a significant increase in the
DW velocity. A striking phenomenon is the dependence on
chirality; with the central DW vortex oppositely oriented
to the applied field, the DW motion exhibits a high-field
Walker-like breakdown, whereas breakdown may be sup-
pressed or even absent when the vortex is aligned with the
applied field [28-30].

In this paper, we analytically address the DW dynamics
in thin ferromagnetic nanotubes under the action of an ex-

ternal magnetic field and derive an explicit formula for the
DW propagation speed in the regimes of strong and weak
penalization. Our formula reveals a nonlinear dependence
of the propagation speed on the nanotube radius, and may
be used as a guide in devising new experiments.

Fig. 1: A sketch of a nanotube with an outer radius R and an
inner radius R — w. A point on the outer surface of the nan-
otube is parametrized by the coordinate x along its symmetry
axis and the polar angle 1. The unit vectors e, (parallel to the
symmetry axis), ey, (tangential to the surface), and e, (normal
to the surface) form a right-handed triplet.

We consider an infinitely long ferromagnetic nanotube
with an outer radius R and an inner radius (R — w) (see
Fig. 1). The magnetization distribution at a spatial point
x and time ¢ is described by M(x,t) = M,m(x,t), where
Im(x,t)] = 1if x € Q (the point belongs to the nanotube
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region) and |m(x,t)| = 0 if x ¢ Q (the point lies outside
the nanotube region). Here, M, stands for the satura-
tion magnetization. The full micromagnetic energy of the
nanotube is given by [34]

E(m) :A/Q |Vm|?dx + K/Q [1—(m-e,;)? dx

M2
n “OT/R IVul2dx, (1)

where the magnetostatic potential u(x,t) satisfies

V-(Vu+m)=0 for xecR>. (2)
Here, A denotes the exchange constant, K is the easy axis
anisotropy constant, pg = 47 x 1077 Wb/(A-m) is the
magnetic permeability of vacuum, and e, is a unit vector
pointing along the symmetry axis (z-axis) of the nanotube
(see Eq. 1).

Within a continuum description, the time evolution of
the magnetization distribution is governed by the Landau-
Lifshitz (LL) equation [34]

a—mzfymxH—ozmx(mxH).

5 (3)

Here, ~ denotes the gyromagnetic ratio, « is a phe-
nomenological damping parameter, and H is an effective
magnetic field, given by

1 m
woMs dm

H(m

): +Haa

(4)
where H,, stands for the applied (external) magnetic field.
Being interested in the dynamics of a magnetization do-
main wall (DW), we focus on solutions of Eq. (3) subject
to the boundary conditions m(x,t) — +e, for x — +oo
(and x € Q).

We now address the case of a thin nanotube, such that
w < R. In this limit, the volume integrals in Eq. (1) can
be approximately reduced to integrals over the surface of a
cylinder, and the stray-field energy can be approximated
by an additional effective local anisotropy that penalises
the magnetisation component in the radial direction (see
[35,36] for mathematical details of this procedure). Thus,
rescaling the spatial variables, x = R&; the micromagnetic
energy, F = 2AwE; and the effective and applied fields,
H = 24/(uoMsR?)|H and H, = [2A/(poMsR?)|H 4, we
approximate Egs. (1-4) by

E(m) :% L |Vsm|2da + g/s [1 — (m- ew)2] do
+ g /S(m -e,)’do (5)
and

H(m) = V%m +r(m-ez)e; —A(m-eyle, +Hq, (6)

where k = KR?/A and A\ = gM2R?/(2A). The integrals
in Eq. (5) run over the surface of an infinitely long cylin-
der of unit radius, and Vg = eza% + ew% represents the
surface gradient (and, accordingly, V% = 38—;2 + % the
surface Laplacian). Consequently, rescaling the time vari-
able as t = [ugMsR?/(2vA)]T, we rewrite the LL equation
(3) in the dimensionless form,
om

o
— =mxH - —mx

5. 5 (m x H).

(7)

Equations (5-7), along with the boundary condition
m({,7) — e, as & — £oo specify the magnetization dy-
namics problem addressed in this paper. Throughout we
consider the regime x = O(1), which corresponds to nan-
otube radii R comparable to the exchange length \/A/K.
Below we consider the two limiting cases A > 1 and A < 1,
which correspond to K < poM?2 (weak anisotropy) and
K > uoM? (strong anisotropy) respectively. In both cases
we provide exact, traveling wave solutions of the LL equa-
tion.
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Fig. 2: A sketch of a magnetization DW for the case of A > 1.

Strong penalization case, A > 1. - In ferromagnetic
nanotubes with very large A and applied fields of order
1, the penalization term in the micromagnetic energy,
Eq. (5), essentially forces the magnetization distribution
m to lie nearly tangent to the cylinder (see Fig. 2). More
specifically, it can be shown that m = m; 4+ A~'m,,, where
m; = (m-e;)e, + (m-ey)e, is tangent to the cylinder
and m, = (m-e,)e, (with |m,| ~ O(1)) is normal to the
cylinder surface.

Resolving the effective field into its tangential and nor-
mal components Hy = (H - ez)e, + (H - ey)ey and
H, = (H-e,)e, (both || and |H,| being of order 1), we
rewrite Eq. (7) as (f—Tmt =my X (Hi+Hn) — %mt X [myg x
(Hi+Hn))]+O(A1). Then, resolving this equation into
its tangential and normal components and keeping terms
of the leading order in A~!, we obtain

(®)
(9)

(6]
7mt:mtx7{n—7mtx(mt><7it),
Y

dr

0:mtxﬂtf%mtx(mtx?‘tn).
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Taking the cross product of both sides of Eq. (9) with my,
and using |my|? = 1 4+ O(A™2) we obtain, to the leading
order in A1,

m; X H, = —gmt X (my x Hy) . (10)
Finally, substituting Eq. (10) into Eq. (8), we conclude
that, in the limit A — oo (or, more generally, in the
leading order in A~1) the time evolution of m(&, 1, 7) is
governed by the modified LL equation,

8m__(a+7>mx(mxm), (11)

or e
where the magnetization distribution is restricted to be
tangent to the surface of the cylinder,

m =e,cosf + e,sinf.

In general, 6§ = 6(£,4, 7). A similar result has been ob-
tained for the effective dynamics in thin ferromagnetic
films [37].

We now assume that the applied magnetic field is di-
rected along the nanotube axis, H, = H,e;. Substitut-
ing Eq. (12) into Eq. (6), taking into account the fact that
%ew = —e, and %ep = ey, and discarding the compo-
nent of H along e,, we obtain the tangential component
of the effective field,

(12)

Hy :( —sin@ V%0 — cos 0 |Vs0|* + k cos 6 + Ha)ew
+ (cosOVE0 —sinf |[Vg0|* —sinb)e,, . (13)
Consequently,

m X (m X Ht) =

(V0 — (1 + k)sinfcosd — H,sinb) (e, sinf — ey, cos ) .
(14)

Thus, using the identity %m = —(e,sinf — ey cos 9)%9

and Eq. (14) in the left- and right-hand side of Eq. (11)

respectively, we obtain

0
% = (: + Z) (VE0 — (1 + k)sinfcosd — H,sind) .
(15)
Equation (15) governs the dynamics of the magnetiza-

tion distribution, given by Eq. (12), subject to the bound-
ary conditions lim 6(£,¢,7) =7 and lim 6(§,¢,7) =
£——o0 =+

0. It can be straightforwardly verified that this problem
admits a family of exact traveling wave solutions

o(fa q/}’ 7-) = 61 (5 - 60(7-)) ’ (16)
where the function
01(&) = 2tanexp (—&V1 + k) (17)

(or, equivalently, c?—591 = —V/1 4+ k sin O1) determines the
spatial profile of the traveling wave, and

dfo__<a+7> Ha
dr v o«

1+k (18)

gives the propagation velocity. In the original physical
coordinates, the propagation velocity reads

d.’l?o

__ (e T
dt (7+a>

yRH,

V1+KRZ/A

(19)

Equation (19) gives explicitly the nonlinear dependence of
the DW propagation speed on the nanotube radius. Thus,
in the anisotropic case (K > 0), our formula shows that
|42 o< RH, for R < /A/K, and |&xo| o< H, for
R > /A/K. In the isotropic case (K = 0), however,
xo| x RH, at any nanotube radius.
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Fig. 3: A sketch of the magnetization DW for the case of A < 1.
The DW has the helicity index n = 1.

n=>0 n=1 n =2
Fig. 4: Magnetisation in a cross-section of the nanotube for dif-
ferent helicities n. The case n = 0 corresponds to a transverse

domain wall [28].

Weak penalization case, A < 1. — We now focus on the
case of a strongly anisotropic ferromagnetic nanotube for
which the penalization parameter A is negligibly small. In
this case the magnetization distribution m is no longer
restricted to lie tangent to the cylinder and explores the
full unit sphere. Its time evolution is governed by the LL
equation (7) with the effective field approximated by (cf.

Eq. (6))

H=Vim+ (km-e, +H,)e,. (20)

Substituting the Cartesian representation of the mag-
netization distribution, m = (cos 6, sin 6 cos ¢, sin 0 sin ¢),
into Egs. (7) and (20), we obtain a system of two coupled
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nonlinear PDEs for the unknown functions 6 = 6(&, ¢, 1)

and ¢ = ¢(£,9,7):

00 09 (a7
E+&E 1n6—(’y+a>]:1, (21)
190,99 (2,7
o T _(7+a)f2’ (22)
where
920 9% ao\>  [(0s\?] .
Fi _87524_571/)2_ 54—(85) +<81/1) sin 6 cos 0
— Hysinb, (23)
900¢ 80 O ¢ 0%¢] .
:2 —_— —_— e R .
Fo [3£3£+8¢3¢] COSQ+[8§2+8@D2 sin 6

(24)

As before, this system is to be solved subject to
the boundary conditions Elim 0, v, 7) = w and
——00

lm 0(&,4,7) =0 .

£—+o0

As can be readily verified by a direct substitution, this
problem admits a two-parameter family of exact traveling
wave solutions

9(57%7’) = @n (5 - 50(7—)) )

D&, 7) =ny + (1),
with n € Z. Here, the longitudinal profile of the DW is
given by

(27)

0,(&) = 2tantexp <f§\/ n? + n)

(or, equivalently, d%@n = —v/n? + Kk sin ©,,), the preces-
sion velocity by

do
— = —H,, 28
&= )
and the propagation velocity by
d a
fo - (6% H (29)

dr __5\/n2+n.

In the original physical coordinates, the propagation ve-
locity reads

H,
dxg o aRH, (30)

dt 2+ KRZJA’

In Egs. (25-30), the index n measures the DW helicity.
That is, n counts the number of times that the magne-
tization vector turns about e, as the circumference of
the cylinder is traversed. A sketch of a DW with n = 1
is shown in Fig. 3, and cross-sections for different n are
shown in Fig. 4. It is interesting to note that DWs with
lower helicity (and lower free energy) propagate faster.
The maximal propagation speed |L&| = (a/v)Hq|/v/E
is achieved for n = 0 and is independent of R. As in the

strong penalization case (cf Eq. (19)), Eq. (30) gives the
full nonlinear dependence of the DW propagation speed
on the nanotube radius. We see that |$xo| o< RH, for

R < ny/A/K, while | L] < H, for R > n\/A/K.

In conclusion, we have conducted an analytic study of
the DW dynamics in thin ferromagnetic nanotubes sub-
ject to external longitudinal magnetic fields. We have
found explicit functional forms of the DW profiles and de-
rived explicit formulas for the DW velocity in the regimes
of strong and weak penalization, Eqgs. (19) and (30) re-
spectively. In the strong penalization case, the magneti-
zation field lies nearly tangent to the nanotube, while for
weak penalizations, the magnetization vector may wrap
around the nanotube with any integer helicity index. The
DW propagation speed increases with the nanotube ra-
dius in a nonlinear way, and, in the weak penalization
case, decreases with increasing helicity. Since for a typi-
cal ferromagnetic material /7 < 1, DWs in the strong-
penalization case propagate much faster than those in
the weak-penalization case. It would be of consider-
able interest to extend this analysis to the intermediate
regime, where chirality-dependent breakdown phenomena
have been observed, and the DW profile is known to de-
pend on the applied field. In accord with previous studies,
we would expect the finite width of the nanotube to play
a role.
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