6,557 research outputs found

    Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting

    Full text link
    Our poor understanding of the boundaries of convective cores generates large uncertainties on the extent of these cores and thus on stellar ages. Our aim is to use asteroseismology to consistently measure the extent of convective cores in a sample of main-sequence stars whose masses lie around the mass-limit for having a convective core. We first test and validate a seismic diagnostic that was proposed to probe in a model-dependent way the extent of convective cores using the so-called r010r_{010} ratios, which are built with l=0l=0 and l=1l=1 modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets to optimize the efficiency of this diagnostic. For this purpose, we compute grids of stellar models with both the CESAM2k and MESA evolution codes, where the extensions of convective cores are modeled either by an instantaneous mixing or as a diffusion process. Among the selected targets, we are able to unambiguously detect convective cores in eight stars and we obtain seismic measurements of the extent of the mixed core in these targets with a good agreement between the CESAM2k and MESA codes. By performing optimizations using the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of extra-mixing beyond the core that is required in CESAM2k to reproduce seismic observations for these eight stars and we show that this can be used to propose a calibration of this quantity. This calibration depends on the prescription chosen for the extra-mixing, but we find that it should be valid also for the code MESA, provided the same prescription is used. This study constitutes a first step towards the calibration of the extension of convective cores in low-mass stars, which will help reduce the uncertainties on the ages of these stars.Comment: 27 pages, 15 figures, accepted in A&

    Spatial Structure of Ion Beams in an Expanding Plasma

    Full text link
    We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas

    Development of Aluminum LEKIDs for Balloon-Borne Far-IR Spectroscopy

    Get PDF
    We are developing lumped-element kinetic inductance detectors (LEKIDs) designed to achieve background-limited sensitivity for far-infrared (FIR) spectroscopy on a stratospheric balloon. The Spectroscopic Terahertz Airborne Receiver for Far-InfraRed Exploration (STARFIRE) will study the evolution of dusty galaxies with observations of the [CII] 158 ÎŒ\mum and other atomic fine-structure transitions at z=0.5−1.5z=0.5-1.5, both through direct observations of individual luminous infrared galaxies, and in blind surveys using the technique of line intensity mapping. The spectrometer will require large format (∌\sim1800 detectors) arrays of dual-polarization sensitive detectors with NEPs of 1×10−171 \times 10^{-17} W Hz−1/2^{-1/2}. The low-volume LEKIDs are fabricated with a single layer of aluminum (20 nm thick) deposited on a crystalline silicon wafer, with resonance frequencies of 100−250100-250 MHz. The inductor is a single meander with a linewidth of 0.4 ÎŒ\mum, patterned in a grid to absorb optical power in both polarizations. The meander is coupled to a circular waveguide, fed by a conical feedhorn. Initial testing of a small array prototype has demonstrated good yield, and a median NEP of 4×10−184 \times 10^{-18} W Hz−1/2^{-1/2}.Comment: accepted for publication in Journal of Low Temperature Physic

    Multiple universes, cosmic coincidences, and other dark matters

    Full text link
    Even when completely and consistently formulated, a fundamental theory of physics and cosmological boundary conditions may not give unambiguous and unique predictions for the universe we observe; indeed inflation, string/M theory, and quantum cosmology all arguably suggest that we can observe only one member of an ensemble with diverse properties. How, then, can such theories be tested? It has been variously asserted that in a future measurement we should observe the a priori most probable set of predicted properties (the ``bottom-up'' approach), or the most probable set compatible with all current observations (the ``top-down'' approach), or the most probable set consistent with the existence of observers (the ``anthropic'' approach). These inhabit a spectrum of levels of conditionalization and can lead to qualitatively different predictions. For example, in a context in which the densities of various species of dark matter vary among members of an ensemble of otherwise similar regions, from the top-down or anthropic viewpoints -- but not the bottom-up -- it would be natural for us to observe multiple types of dark matter with similar contributions to the observed dark matter density. In the anthropic approach it is also possible in principle to strengthen this argument and the limit the number of likely dark matter sub-components. In both cases the argument may be extendible to dark energy or primordial density perturbations. This implies that the anthropic approach to cosmology, introduced in part to explain "coincidences" between unrelated constituents of our universe, predicts that more, as-yet-unobserved coincidences should come to light.Comment: 18 JCAP-style pages, accepted by JCAP. Revised version adds references and some clarification

    Measuring the vertical age structure of the Galactic disc using asteroseismology and SAGA

    Get PDF
    The existence of a vertical age gradient in the Milky Way disc has been indirectly known for long. Here, we measure it directly for the first time with seismic ages, using red giants observed by Kepler. We use Stroemgren photometry to gauge the selection function of asteroseismic targets, and derive colour and magnitude limits where giants with measured oscillations are representative of the underlying population in the field. Limits in the 2MASS system are also derived. We lay out a method to assess and correct for target selection effects independent of Galaxy models. We find that low mass, i.e. old red giants dominate at increasing Galactic heights, whereas closer to the Galactic plane they exhibit a wide range of ages and metallicities. Parametrizing this as a vertical gradient returns approximately 4 Gyr/kpc for the disc we probe, although with a large dispersion of ages at all heights. The ages of stars show a smooth distribution over the last 10 Gyr, consistent with a mostly quiescent evolution for the Milky Way disc since a redshift of about 2. We also find a flat age-metallicity relation for disc stars. Finally, we show how to use secondary clump stars to estimate the present-day intrinsic metallicity spread, and suggest using their number count as a new proxy for tracing the ageing of the disc. This work highlights the power of asteroseismology for Galactic studies; however, we also emphasize the need for better constraints on stellar mass-loss, which is a major source of systematic age uncertainties in red giant stars.Comment: MNRAS, accepted. SAGA website and data at http://www.mso.anu.edu.au/saga/data_access.htm

    Energy Dissipation and Trapping of Particles Moving on a Rough Surface

    Full text link
    We report an experimental, numerical and theoretical study of the motion of a ball on a rough inclined surface. The control parameters are DD, the diameter of the ball, Ξ\theta, the inclination angle of the rough surface and EkiE_{ki}, the initial kinetic energy. When the angle of inclination is larger than some critical value, Ξ>ΞT\theta>\theta_{T}, the ball moves at a constant average velocity which is independent of the initial conditions. For an angle Ξ<ΞT\theta < \theta_{T}, the balls are trapped after moving a certain distance. The dependence of the travelled distances on EkiE_{ki}, DD and Ξ\theta. is analysed. The existence of two kinds of mechanisms of dissipation is thus brought to light. We find that for high initial velocities the friction force is constant. As the velocity decreases below a certain threshold the friction becomes viscous.Comment: 8 pages RevTeX, 12 Postscript figure

    Frequency dispersion reduction and bond conversion on n-type GaAs by in situ surface oxide removal and passivation

    Get PDF
    The method of surface preparation on n-type GaAs, even with the presence of an amorphous-Si interfacial passivation layer, is shown to be a critical step in the removal of accumulation capacitance frequency dispersion. In situ deposition and analysis techniques were used to study different surface preparations, including NH4OH, Si-flux, and atomic hydrogen exposures, as well as Si passivation depositions prior to in situ atomic layer deposition of Al2O3. As–O bonding was removed and a bond conversion process with Si deposition is observed. The accumulation capacitance frequency dispersion was removed only when a Si interlayer and a specific surface clean were combined

    Anthropic reasoning in multiverse cosmology and string theory

    Get PDF
    Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle, though ultimately a tautology, is nevertheless ambiguous. It can be reformulated in one of two unambiguous ways, which we refer to as WAP_1 and WAP_2. We show that WAP_2, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of "typicality", and we argue that this assumption is both misguided and unjustified. WAP_1, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP_1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning.Comment: 7 pages. Expanded discussion of selection effects and some minor clarifications, as publishe

    GaAs interfacial self-cleaning by atomic layer deposition

    Get PDF
    The reduction and removal of surface oxides from GaAs substrates by atomic layer deposition (ALD) of Al2O3 and HfO2 are studied using in situ monochromatic x-ray photoelectron spectroscopy. Using the combination of in situ deposition and analysis techniques, the interfacial "self-cleaning" is shown to be oxidation state dependent as well as metal organic precursor dependent. Thermodynamics, charge balance, and oxygen coordination drive the removal of certain species of surface oxides while allowing others to remain. These factors suggest proper selection of surface treatments and ALD precursors can result in selective interfacial bonding arrangements
    • 

    corecore