1,125 research outputs found

    Influences of thermal environment on fish growth

    Get PDF
    Indexación: Scopus.Thermoregulation in ectothermic animals is influenced by the ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown whether physiological and/or metabolic traits are impacted by modifications to the thermal environment. Our research provides key evidence that fish ectotherms are highly influenced by thermal variability during development, which leads to important modifications at several metabolic levels (e.g., growth trajectories, microstructural alterations, muscle injuries, and molecular mechanisms). In Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.4°C) during development (posthatch larvae to juveniles) was associated with increases in key thermal performance measures for survival and growth trajectory. Other metabolic traits were also significantly influenced, such as size, muscle cellularity, and molecular growth regulators possibly affected by adaptive processes. In contrast, a restricted thermal range (ΔT 1.4°C) was detrimental to growth, survival, and cellular microstructure as muscle growth could not keep pace with increased metabolic demands. These findings provide a possible basic explanation for the effects of thermal environment during growth. In conclusion, our results highlight the key role of thermal range amplitude on survival and on interactions with major metabolism-regulating processes that have positive adaptive effects for organisms.http://onlinelibrary.wiley.com/doi/10.1002/ece3.3239/ful

    Schwinger mechanism for gluons from lattice QCD

    Get PDF
    Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerges as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale

    Ghost dynamics in the soft gluon limit

    Get PDF
    We present a detailed study of the dynamics associated with the ghost sector of quenched QCD in the Landau gauge, where the relevant dynamical equations are supplemented with key inputs originating from large-volume lattice simulations. In particular, we solve the coupled system of Schwinger-Dyson equations that governs the evolution of the ghost dressing function and the ghost-gluon vertex, using as input for the gluon propagator lattice data that have been cured from volume and discretization artifacts. In addition, we explore the soft gluon limit of the same system, employing recent lattice data for the three-gluon vertex that enters in one of the diagrams defining the Schwinger-Dyson equation of the ghost-gluon vertex. The results obtained from the numerical treatment of these equations are in excellent agreement with lattice data for the ghost dressing function, once the latter have undergone the appropriate scale-setting and artifact elimination refinements. Moreover, the coincidence observed between the ghost-gluon vertex in general kinematics and in the soft gluon limit reveals an outstanding consistency of physical concepts and computational schemes.Comment: 34 pages, 12 figure

    Schwinger mechanism for gluons from lattice QCD

    Full text link
    Continuum and lattice analyses have revealed the existence of a mass-scale in the gluon two-point Schwinger function. It has long been conjectured that this expresses the action of a Schwinger mechanism for gauge boson mass generation in quantum chromodynamics (QCD). For such to be true, it is necessary and sufficient that a dynamically-generated, massless, colour-carrying, scalar gluon+gluon correlation emerge as a feature of the dressed three-gluon vertex. Working with results on elementary Schwinger functions obtained via the numerical simulation of lattice-regularised QCD, we establish with an extremely high level of confidence that just such a feature appears; hence, confirm the conjectured origin of the gluon mass scale.Comment: 8 pages, 8 figure

    Environmental Awareness of the Young in a Rural Community in the Sierra Tarahumara, Chihuahua, Mexico

    Get PDF
    With the aim at exploring the environmental awareness of the young sector in a predominantly indigenous community, fifty structured street interviews were applied to young individuals, aged 14 to 21, attending schools at Turuachi, a distant undeveloped rural community in the Sierra Tarahumara, in the State of Chihuahua, Northern Mexico. The data were analyzed by the software SPSS® (Statistical Package for Social Sciences). Most of the interviewees showed a good knowledge of basic ecology concepts. However, their perception of environmental problems appeared to be more influenced by everyday experiences. Despite forest being a major natural resource in the area, the group studied viewed cropping as the main economic activity. The main environmental problem was garbage pollution followed by deforestation and drought. The Chi2 test showed that women had a stronger perception than men about the garbage issue (p<0.057) and a clear disposition (p<0.001) to participate in municipal cleaning campaigns. Nearly all the participants were willing to engage in activities to preserve environmental quality; community action and specific workshops were selected as viable organization alternatives. Key words: environmental education, community participation, environmental problems

    The Infrared Behaviour of the Pure Yang-Mills Green Functions

    Full text link
    We review the infrared properties of the pure Yang-Mills correlators and discuss recent results concerning the two classes of low-momentum solutions for them reported in literature; i.e. decoupling and scaling solutions. We will mainly focuss on the Landau gauge and pay special attention to the results inferred from the analysis of the Dyson-Schwinger equations of the theory and from "{\it quenched}" lattice QCD. The results obtained from properly interplaying both approaches are strongly emphasized.Comment: Final version to be published in FBS (54 pgs., 11 figs., 4 tabs

    Hearing Sensation Levels of Emitted Biosonar Clicks in an Echolocating Atlantic Bottlenose Dolphin

    Get PDF
    Emitted biosonar clicks and auditory evoked potential (AEP) responses triggered by the clicks were synchronously recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to wear suction-cup EEG electrodes and to detect targets by echolocation. Three targets with target strengths of −34, −28, and −22 dB were used at distances of 2 to 6.5 m for each target. The AEP responses were sorted according to the corresponding emitted click source levels in 5-dB bins and averaged within each bin to extract biosonar click-related AEPs from noise. The AEP amplitudes were measured peak-to-peak and plotted as a function of click source levels for each target type, distance, and target-present or target-absent condition. Hearing sensation levels of the biosonar clicks were evaluated by comparing the functions of the biosonar click-related AEP amplitude-versus-click source level to a function of external (in free field) click-related AEP amplitude-versus-click sound pressure level. The results indicated that the dolphin's hearing sensation levels to her own biosonar clicks were equal to that of external clicks with sound pressure levels 16 to 36 dB lower than the biosonar click source levels, varying with target type, distance, and condition. These data may be assumed to indicate that the bottlenose dolphin possesses effective protection mechanisms to isolate the self-produced intense biosonar beam from the animal's ears during echolocation

    Elucidating the neuropathologic mechanisms of SARS-CoV-2 infection

    Get PDF
    Acknowledgements We want to express our gratitude to the Union Medical University Clinic, Dominican Republic, for their support and collaboration in the development of this research project. We also want to express our gratitude to the Mexican families who have donated the brain of their loved ones affected with Alzheimer's disease and made our research possible. This work is dedicated to the memory of Professor Dr. José Raúl Mena López†.Peer reviewedPublisher PD

    Sustainable Ethanol Production From Sugarcane Molasses by Saccharomyces cerevisiae Immobilized on Chitosan-Coated Manganese Ferrite

    Get PDF
    The interaction between nanostructures and yeast cells, as well as the description of the effect of nanoparticles in ethanol production are open questions in the development of this nanobiotechnological process. The objective of the present study was to evaluate the ethanol production by Saccharomyces cerevisiae in the free and immobilized state on chitosan-coated manganese ferrite, using cane molasses as a carbon source. To obtain the chitosan-coated manganese ferrite, the one-step coprecipitation method was used. The nanoparticles were characterized by X-ray diffraction obtaining the typical diffraction pattern. The crystal size was calculated by the Scherrer equation as 15.2 nm. The kinetics of sugar consumption and ethanol production were evaluated by HPLC. With the immobilized system, it was possible to obtain an ethanol concentration of 56.15 g/L, as well as the total sugar consumption at 24 h of fermentation. Productivity and yield in this case were 2.3 ± 0.2 g/(L * h) and 0.28 ± 0.03, respectively. However, at the same time in the fermentation with free yeast, 39.1 g/L were obtained. The total consumption of fermentable sugar was observed only after 42 h, reaching an ethanol titer of 50.7 ± 3.1, productivity and yield of 1.4 ± 0.3 g/(L * h) and 0.25 ± 0.4, respectively. Therefore, a reduction in fermentation time, higher ethanol titer and productivity were demonstrated in the presence of nanoparticles. The application of manganese ferrite nanoparticles shows a beneficial effect on ethanol production. Research focused on the task of defining the mechanism of their action and evaluation of the reuse of biomass immobilized on manganese ferrite in the ethanol production process should be carried out in the future
    corecore