21,214 research outputs found

    Gluon mass and freezing of the QCD coupling

    Get PDF
    Infrared finite solutions for the gluon propagator of pure QCD are obtained from the gauge-invariant non-linear Schwinger-Dyson equation formulated in the Feynman gauge of the background field method. These solutions may be fitted using a massive propagator, with the special characteristic that the effective mass employed drops asymptotically as the inverse square of the momentum transfer, in agreement with general operator-product expansion arguments. Due to the presence of the dynamical gluon mass the strong effective charge extracted from these solutions freezes at a finite value, giving rise to an infrared fixed point for QCD.Comment: 3 pages, 2 figures, based on talk given at the 2007 Europhysics Conference on High Energy Physics, Manchester, 19-25 Jul

    Single top polarisation as a window to new physics

    Full text link
    We discuss the effect of heavy new physics, parameterised in terms of four-fermion operators, in the polarisation of single top (anti-)quarks in the tt-channel process at the LHC. It is found that for operators involving a right-handed top quark field the relative effect on the longitudinal polarisation is twice larger than the relative effect on the total cross section. This enhanced dependence on possible four-fermion contributions makes the polarisation measurements specially interesting, in particular at high momenta.Comment: LaTeX 10 pages. v2: comments and references added, journal versio

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    Top effective operators at the ILC

    Get PDF
    We investigate the effect of top trilinear operators in t tbar production at the ILC. We find that the sensitivity to these operators largely surpasses the one achievable by the LHC either in neutral or charged current processes, allowing to probe new physics scales up to 4.5 TeV for a centre of mass energy of 500 GeV. We show how the use of beam polarisation and an eventual energy upgrade to 1 TeV allow to disentangle all effective operator contributions to the Ztt and gamma tt vertices.Comment: LaTeX 13 pages. Typos corrected. Final version in JHE

    The effect of electromagnetic properties of neutrinos on the photon-neutrino decoupling temperature

    Full text link
    We examine the impact of electromagnetic properties of neutrinos on the annihilation of relic neutrinos with ultra high energy cosmic neutrinos for the ννˉγγ\nu \bar{\nu}\to \gamma\gamma process. For this process, photon-neutrino decoupling temperature is calculated via effective lagrangian model beyond the standard model. We find that photon-neutrino decoupling temperature can be importantly reduced below the QCD phase transition with the model independent analysis defining electromagnetic properties of neutrinos.Comment: 12 pages, 3 figures, published versio

    Recent studies of top quark properties and decays at hadron colliders

    Full text link
    The top quark is the heaviest known elementary particle. Observed for the first time in 1995 at the Tevatron by the CDF and D0 experiments, it has become object of several studies aimed at fully characterize its properties and decays. Precise determinations of top quark characteristics verify the internal consistency of the standard model and are sensitive to new physics phenomena. With the advent of the large top quark production rates generated at the LHC, top quark studies have reached unprecedented statistical precision. This review summarizes the recent measurements of top quark properties and studies of its decays performed at the LHC and Tevatron.Comment: 13 pages, 4 figures, 5 tables, Presented at Flavor Physics and CP Violation (FPCP 2012), Hefei, China, May 21-25, 201

    Magnus Expansion and Three-Neutrino Oscillations in Matter

    Full text link
    We present a semi-analytical derivation of the survival probability of solar neutrinos in the three generation scheme, based on the Magnus approximation of the evolution operator of a three level system, and assuming a mass hierarchy among neutrino mass eigenstates. We have used an exponential profile for the solar electron density in our approximation. The different interesting density regions that appear throughout the propagation are analyzed. Finally, some comments on the allowed regions in the solar neutrino parameter space are addressed.Comment: RevTex4 style, 5 pages including 5 figures. Presented at Mexican School of Astrophysics 2002, Guanajuato, Mexico, 31 Jul - 7 Aug 2002. Final version to appear in the Proceedings of IX Mexican Workshop on Particles and Fields Physics Beyond the Standard Model, Colima Col. Mexico, November 17-22, 200
    corecore