7,845 research outputs found

    Quantum Key Distribution using Continuous-variable non-Gaussian States

    Full text link
    In this work we present a quantum key distribution protocol using continuous-variable non-Gaussian states, homodyne detection and post-selection. The employed signal states are the Photon Added then Subtracted Coherent States (PASCS) in which one photon is added and subsequently one photon is subtracted. We analyze the performance of our protocol, compared to a coherent state based protocol, for two different attacks that could be carried out by the eavesdropper (Eve). We calculate the secret key rate transmission in a lossy line for a superior channel (beam-splitter) attack, and we show that we may increase the secret key generation rate by using the non-Gaussian PASCS rather than coherent states. We also consider the simultaneous quadrature measurement (intercept-resend) attack and we show that the efficiency of Eve's attack is substantially reduced if PASCS are used as signal states.Comment: We have included an analysis of the simultaneous quadrature measurement attack plus 2 figures; we have also clarified some point

    Chaotic and deterministic switching in a two-person game

    Get PDF
    We study robust long-term complex behaviour in the Rock-Scissors-Paper game with two players, played using reinforcement learning. The complex behaviour is connected to the existence of a heteroclinic network for the dynamics. This network is made of three heteroclinic cycles consisting of nine equilibria and the trajectories connecting them. We provide analytical proof both for the existence of chaotic switching near the heteroclinic network and for the relative asymptotic stability of at least one cycle in the network, leading to behaviour ranging from almost deterministic actions to chaotic-like dynamics. Our results are obtained by making use of the symmetry of the original problem, a new approach in the context of learning.learning process, dynamics, switching, chaos

    Semiclassical Tunneling of Wavepackets with Real Trajectories

    Get PDF
    Semiclassical approximations for tunneling processes usually involve complex trajectories or complex times. In this paper we use a previously derived approximation involving only real trajectories propagating in real time to describe the scattering of a Gaussian wavepacket by a finite square potential barrier. We show that the approximation describes both tunneling and interferences very accurately in the limit of small Plank's constant. We use these results to estimate the tunneling time of the wavepacket and find that, for high energies, the barrier slows down the wavepacket but that it speeds it up at energies comparable to the barrier height.Comment: 23 pages, 7 figures Revised text and figure

    Chaos in one-dimensional lattices under intense laser fields

    Full text link
    A model is investigated where a monochromatic, spatially homogeneous laser field interacts with an electron in a one-dimensional periodic lattice. The classical Hamiltonian is presented and the technique of stroboscopic maps is used to study the dynamical behavior of the model. The electron motion is found to be completely regular only for small field amplitudes, developing a larger chaotic region as the amplitude increases. The quantum counterpart of the classical Hamiltonian is derived. Exact numerical diagonalizations show the existence of universal, random-matrix fluctuations in the electronic energy bands dressed by the laser field. A detailed analysis of the classical phase space is compatible with the statistical spectral analysis of the quantum model. The application of this model to describe transport and optical absorption in semiconductor superlattices submitted to intense infrared laser radiation is proposed.Comment: 9 pages, RevTex 3.0, EPSF (6 figures), to appear in Europhys. J.

    State sum construction of two-dimensional open-closed Topological Quantum Field Theories

    Full text link
    We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma--Hosono--Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.Comment: 33 pages; LaTeX2e with xypic and pstricks macros; v2: typos correcte
    corecore