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Chaotic and deterministic switching in a two-person game

Manuela A.D. Aguiar®! and Sofia B.S.D. Castro®

¢ Centro de Matematica and Faculdade de Economia, Universidade do Porto, Portugal

Abstract

We study robust long-term complex behaviour in the Rock-Scissors-Paper game with
two players, played using reinforcement learning. The complex behaviour is connected to
the existence of a heteroclinic network for the dynamics. This network is made of three
heteroclinic cycles consisting of nine equilibria and the trajectories connecting them. We
provide analytical proof both for the existence of chaotic switching near the heteroclinic
network and for the relative asymptotic stability of at least one cycle in the network,
leading to behaviour ranging from almost deterministic actions to chaotic-like dynamics.
Our results are obtained by making use of the symmetry of the original problem, a new
approach in the context of learning.

JEL classification: C72, D83
Keywords: learning process, dynamics, switching, chaos

1 Introduction

Recent years have seen a thriving expansion within the subject of learning in games, both
from the point of view of population dynamics in biology and from that of strategic thinking
applied to economics. Two landmark references are Hofbauer and Sigmund [17] concerning
the first viewpoint and Fudenberg and Levine [10] concerning the latter. See also Hofbauer
and Sigmund [19] and Fudenberg and Levine [11] for more recent updates. Clearly, the
two perspectives are not mutually exclusive and share common concerns such as asymptotic
behaviour and convergence to equilibrium, learning rules or adaptation processes leading, or
not, to equilibrium in the long-run.

Results have been achieved in many settings, both experimentally, numerically or analyt-
ically. Our results are analitycal but we refer to the papers by Roth and Erev [23, 7] and by
Henrich et al. [15], as well as references in these papers, for an experimental treatment of
learning. Numerical simulations are pervasive in the literature, out of necessity when models
become too hard to solve. We refer to the work of Chawanya [5] and Sato et al. [25, 26] on
this point.?

A central issue in learning is that of the learning procedure itself. This may consist, for
instance, in simple imitation, in taking into account previous best-responses or in responding
to some reinforcement received after an action. In the two latter cases, memory (or lack
thereof) is also an issue: if there is memory loss then the effect of recent events is stronger
than that of earlier ones; with perfect memory, all events affect the agent in the same way. See
Hofbauer and Sigmund [19]. Since different games produce different outcomes with different
learning processes, it has been an issue to decide which learning processes will eventually
lead to equilibrium for each type of game. See Roth and Erev [23] for a comparison between
behaviour in experiments and learning models.
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Most learning processes or models fit into, possibly a variation, of fictitious play: a process
where players are engaged in playing a finite game repeatedly (this includes infinite repeti-
tion). The state of play is given by a probability vector, describing the mixed strategies of
the agents. The dynamics of play are described by a dynamical system having the probability
vectors describing the mixed strategies as state variables. One important question is that of
finding out whether the dynamics will converge to a Nash equilibrium in the long-run. In
the case of two players, one with 2 strategies and another with n > 2 strategies, Berger [2]
showed that, both in discrete- and continuous-time, the dynamics approach equilibrium, thus
solving the problem of asymptotic behaviour. However, Roth and Erev [23] do point out
that, in view of experimental results, the “intermediate term predictions of dynamic learning
models may be even more important than their asymptotic properties”. In fact, transient
dynamics can be rather different from asymptotic behaviour, as pointed out by Izquierdo et
al. [20].

It is also well-known that asymptotic behaviour may not coincide with the Nash equilib-
rium of the finite game. In such cases, it is important to describe the asymptotic behaviour,
which may range from periodic (see Shapley [28] and Sparrow et al. [29]) to chaotic (see
Richards [22], Sato et al. [25, 26] and also Sparrow et al. [29]). Lack of convergence to
equilibrium was observed in experiments by Feltovich [8]. Chaotic behaviour may arise or
be described in different ways: Richards [22] and Sparrow et al. [29] address the existence of
chaotic behaviour in the Shapley game [28], the former using a geometric argument and the
latter by looking at the stable manifold of the periodic orbit (this is a result announced for a
future paper). Sato et al. [25, 26] provide numerical evidence for the existence of complicated
dynamics in a Rock-Scissors-Paper game with two players, arising from the existence of a
heteroclinic network for the dynamics.

Our results add to the description of asymptotic behaviour when it does not converge
to equilibrium. We do this by way of an example, even though the techniques we use may
be applied to any game with analogous properties. We use Sato et al. [25, 26] and show,
analytically, that in the Rock-Scissors-Paper (henceforth, RSP) game with two players there is
infinite switching, leading to behaviour ranging from almost deterministic actions to chaotic-
like dynamics. Each pair of choices, one for each player, among the possible actions of Rock,
Scissors or Paper, is an equilibrium of a dynamical system that describes the dynamics of
play. In this game there are 9 equilibria connected by trajectories and forming what is known
as a heteroclinic network. After one choice of action, each player may make a certain number
of choices at the next moment of play. The trajectories connecting the equilibria in the
network reflect precisely these possible sequences of play. The existence of switching means
that, given any possible sequence of play in the network, there are initial choices of action
for each player such that the choices made throughout the game are exactly those described
by the sequence. Thus, every possible sequence of actions may indeed take place in a game,
including both simple sequences, involving a small number of equilibria, and sequences of
play involving all equilibria chosen in random order.

This provides a distinct route to chaos from that considered by Richards [22] and Sparrow
et al. [29] in a context that is equally simple. Furthermore, in our example there is coexistence
of random (in which trajectories of play follow complex patterns) and almost deterministic
(in which players alternate between two actions) behaviour. We will show that when a draw
is penalized, players avoid sequences that involve draws, thus restricting the actions in a
deterministic way. This is related to the stability of the cycles in the network.

In proving our results we make strong use of the symmetry of the problem thus opening
a new way of dealing with the issue of asymptotic behaviour in this context of games. The
symmetry allows us to reduce the study of the dynamics near a network involving 9 equilibria
in a 4-dimensional space to that of the dynamics near a network involving 3 equilibria and a
smaller number of trajectories connecting them.

The following section provides the preliminary results and notation required. In section



3, we describe the heteroclinic network in the RSP game, as well as the quotient network,
with 3 equilibria, induced by symmetry. The properties of the networks are essential for the
results that follow. Section 4 is devoted to the study of the dynamics of the reduced problem
with 3 equilibria. We prove the existence of infinite switching near the quotient network,
study the stability of the cycles that constitute the network, and the stability of the network
as a whole. This is divided into subsections that lead to the proof of theorem 4.5. The
last subsection of section 4 deals with the stability of the cycles in the quotient network and
provides an explanation for a preference for one of the cycles of play, when the payoff for
ties is negative for at least one player. In section 5, we extend the results obtained for the
quotient network to the original network of the RSP game. Section 6 concludes.

2 Preliminary results and notation

Consider a system of differential equations

Cb:f($,)\), (1)

with x € R?, A € R™ and f a smooth vector field.

Symmetry We introduce some background on group theory and equivariant dynamics
needed throughout the paper. Other concepts and results not defined here can be found in
Bredon [4], Chossat and Lauterbach [6], Golubitsky and Schaeffer [12] or Field [9].

Let T" be a compact Lie group acting on R™. System (1) is equivariant by I" or I'-symmetric
if it commutes with the action of I', that is

f(yz, A) =~f(z,\), Vy €T Vo € R".

Let G be a subgroup of I'. The set of points x € R™ that are kept invariant by the action
of the elements in G is a subspace of R”, the fized-point subspace of G

Fiz(G)={x e R": dx ==z, Vo € G}.

Fixed-point subspaces possess the important property of being invariant by the flow of f,
that is, the dynamics of a state in Fiz(G) remain in Fiz(G).
The isotropy subgroup of a point x € R™, denoted by I';, corresponds to the elements of
I' that fix z,
I'y={yel': yx=x}.

The group I' acts freely on a set S € R", if ', = {Id}, for all x € S, with Id the identity
element. That is, the only element of I' that can fix a point x € X, different from the origin,
is the identity element.

The I'-orbit of a point x € R™ is the set of images of x under the action of the group I'

I(z)={yz:veTl}.

An analogous definition applies to the I'-orbit of any flow invariant set. An important and
straightforward consequence is that the elements in the I'-orbit of an equilibrium of system
(1) are also equilibria of the system. More generally, if S is a flow invariant set, then so are
the sets 7S, v € T, in its group orbit. Thus, the elements in the I'-orbit of solution curves
of system (1) are conjugated solution curves. Moreover, the elements in the I'-orbit of a
fixed-point subspace are fixed-point subspaces with conjugated dynamics.

Let S be a subset of R™. The set of all T'-orbits of .S, denoted by S/T', is called the quotient
space or orbit space.

If S is a manifold and the group I" acts freely on S then the orbit space S/I" will again be
a manifold. If S is a smooth finite-dimensional manifold, I" is compact and I' acts smoothly



on S, then the orbit space S/I" is a stratified manifold ([6]). For a definition of stratification
and orbit-stratum see Definitions 4.10.(10-12) of Chossat and Lauterbach [6].

If S is invariant by the flow of f, then the flow of f restricts to a flow on S/T". By the
Smooth Lifting Theorem (theorem 0.2) in Schwarz [27], when I is a compact Lie group and S
is a smooth manifold, for each smooth I'-equivariant vector field on .S, there is a corresponding
smooth strata-preserving vector field on S/T.

Heteroclinic network Let p;, i =1,...,r be saddle equilibria for the flow of f. By saddle
equilibria we mean that the equilibria p; have non-trivial stable and unstable manifolds,
We(pi) # {pi} and W*(p;) # {pi}, 1 =1,...,r.

A heteroclinic connection from p; to p;, denoted by [p; — p;], is a trajectory in W*(p;) N
W#(pj).

There is a heteroclinic cycle connecting the saddle equilibria p;, ¢ = 1,...,r if there is
a reordering of the equilibria such that there are heteroclinic connections [p; — p;41], for
i=1,...,r—1, and [p, — p1].

A heteroclinic network is defined to be a connected union of heteroclinic cycles. It follows
that, given any two equilibria in the network, there is a sequence of connections taking one
to the other. We will also refer to the equilibria in the network as nodes of the network.

The existence of heteroclinic networks is a common phenomenon in problems where there
exist invariant spaces. This can be a consequence of symmetry (see Krupa [21] or Field [9])
or of the formulation of the problem itself, as is the case of games or population dynamics
(see Hofbauer [16] or Hofbauer and Sigmund [18]).

Switching Let X be a heteroclinic network for the flow of f. We loosely follow the set-up
in Aguiar et al. [1].

We define a (finite) path on the network X as a sequence of connections (¢;), i =1,...,s
in ¥ such that ¢; = [p; — p;| and c;41 = [p; — pil, with p;, p; and pj equilibria in ¥. An
infinite path corresponds to an infinite sequence of connections (¢;), i@ € N. Note that, we
consider ¢ € N, and not ¢ € Z, for an infinite path because our original problem is one of
game theory and so there is a beginning of play.

Given a path on the network >, we say that there is a trajectory for the flow of f that
follows that path, if for every neighbourhood V' of the sequence of connections in ¥ defining
that path, there is a trajectory for the flow of f contained in V. That is to say, there is a
trajectory for the flow of f as close as required to the sequence of connections in ¥ defining
the path.

We say there is finite (infinite) switching near a network if for every finite (infinite) path
on the network there is a trajectory, near the network, for the flow of f that follows that
path.

We refer to the type of switching thus described as chaotic.

3 A heteroclinic network in the Rock-Scissors-Paper game

We start by recalling the description of the Rock-Scissors-Paper game (see, for instance, Sato
et al. [26]). Two agents X and Y have the option of playing one of three actions : ‘rock’ (R),
‘scissors’ (S) and ‘paper’ (P). An agent playing R (S, P) beats the other playing S (P, R,
respectively).

Let x1, 29,23 > 0, with 21 + 9 + x3 = 1, denote the probability of agent X playing the
action R, S, or P, respectively. Analogously, for ¢,y and y3 and agent Y.

For each agent, the state space is a two-dimensional simplex, and the collective state
space A = Ax X Ay is four-dimensional.

The normalized interaction matrices are
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where €;,¢, € (—1.0,1.0) are the rewards for ties. Unlike Sato et al. [26], we exclude the
boundary of the interval. Note that, on the boundary, a tie is either as good as a win or as
bad as a defeat.

We consider the case of perfect memory and equal rates of adaptation, and so the dynamics
are given by the following equations (these are the replicator equations, extensively used in
population dynamics)

.’fUi = Ty [(Ay)z — xTAy] (2)
9j =y; [(Bx); — y" Ba]
with 4,7 = 1,2,3. Reinforcement learning, for each player, is described by the terms in
brackets.
Notice that the coordinate hyperplanes are invariant by the flow of (2).

System (2) is equivariant under the symmetry group I' of order 3 generated by the action
of

O—(xla Z2,23,Y1,Y2, y3) = ($3, T1,22,Y3,Y1, y2)

The intersection of Fiz(I') = {(z,z,x,y,y,y);z,y € R} with A corresponds to the Nash
equilibrium (x*,y*) = (%, %, %, %, %, %), which is a saddle with 2-dimensional stable and un-
stable manifolds. Besides the Nash equilibrium there are nine equilibria, that correspond to
the vertices of A, given by (z,y) where z,y € {R, S, P} with R = (1,0,0), S = (0,1,0) and
P =(0,0,1).

Note that the set of the nine equilibria can be partioned into I'-orbits as follows

F((Rv P)) = {(Rv P)v (‘97 R)v (Pv S)} = %o
F((Rv S)) = {(Rv S)v (87 P)7 (P7 R)} =&
F((Rv R)) = {(Rv R)v (Sv S)v (Pv P)} =&

We have denoted by &;, i = 0,1, 2, respectively, the I'-orbit of the equilibria (R, P), (R,S)
and (R, R). Along &y, agent Y wins over agent X, whereas along &; the opposite occurs.
Along &5 there is a draw in play.

Proposition 3.1. There is a heteroclinic network X in A involving all the equilibria at the
vertices of A.

Proof. The existence of a heteroclinic network in the intersection of the invariant hyperplanes
with A is highly likely. We use the standard technique of Guckenheimer and Holmes [13].
We must confirm that the eigenvalues of the equilibria at the vertices have the correct signs
and that there are no equilibria on the one-dimensional edges joining the equilibria at the
vertices.

The analysis of the eigenvalues and eigendirections is easier if we work on invariant spheres
rather than on simplices. We thus make the coordinate change: z; = uf and y; = UZ-Q,
1 =1,2,3. In the new coordinates the system is given by

U = %uz [(Av?); — (u?)T Av?]

vj = %vj [(Bu?); — (v*)T Bu?]



with 4,5 = 1,2, 3, where u? = (u?,u3,u3)T and v? = (v},v2,03)7, with u? +u3 + u% = 1 and
v? 4+ v3 + v3 = 1 invariant by the flow.
The manifold A = A, x A, becomes the fundamental domain

D = {(u1,ua,us,v1,v2,v3) € (]R(‘)F)6 : u% —I-ug —|—u§ = 1,1}% —i—v% —|—v§ =1},

of the manifold given by the direct product of two 2-dimensional spheres.

There are many similarities between the geometry of the flow for the systems (2) and
(3)(Krupa [21]). In fact, the coordinate change corresponds to a smooth conjugacy of the
flows restricted, respectively, to A and D. In particular, trajectories on the edges of A joining
the equilibria at the vertices of A are analogous to trajectories on the edges of D joining the
corresponding equilibria. The sign of the eigenvalues of the linearization at the equilibria is
preserved even though their magnitude is decreased by half.

Let e;,i = 1,...,6 denote the vectors of the canonical basis of R6. Table 1 contains the
information about the eigenvalues and eigenvectors for the three I'-orbits of equilibria, &y, &
and 52.

Equilibria e1 €9 e3 eq es €6
&0 I+de, | 1>0 | =0 2f2<0| -1<0 | -1+ 3¢
& Al | <o) “1<0 | B2>0 | 14ie | 1>0
& “2e, | Ze<o|BEs>0| 2, | Lo<o| 520

Table 1: Eigenvalues and eigenvectors for the I'-orbits of equilibria of system (3). The vectors
e; are those of the canonical basis of RS in a system of local coordinates at each point of the
group orbit of each §;, j =0,1,2.

Tedious, but straightforward, computations show that there are no equilibria on the
one-dimensional edges joining the equilibria at the vertices. The signs of the non-radial
eigenvalues indicated in table 1 together with the Poincaré-Bendixson Theorem, applied on
the two-dimensional invariant spaces, allow us to conclude for the existence of a heteroclinic
network Y involving the equilibria at the vertices. See figure 1, for an image of the connections
in the network. O

The network ¥ is the heteroclinic network numerically observed by Sato et al. [26, section
4.3.2]. Numerical simulations in [26] reveal interesting chaotic dynamics in the neighbourhood
of the network 3, namely the existence of chaotic switching.

As we mentioned in the proof of proposition 3.1, the dynamics of the flow of system (2)
defined on A are conjugated to the dynamics of the flow of system (3) defined on D. Since
the manifold D is smooth, it makes sense to use D in order to look for a suitable quotient
space in which the flow is differentiable, so that we can study the local dynamics near the
heteroclinic network ¥ for the flow of system (3).

In order to provide an analytical proof of the complex behaviour observed in [26], we start
by noting that the network ¥ corresponds to the union of the following three heteroclinic
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Figure 1: Connections in the network X.

cycles:

Co: (R,P)—(S,P)—(SSR)— (P,R)— (P,S)— (R,S) — (R, P)
Cy: (R,S)— (R,R)— (P,R) — (P,P) — (S,P) — (5,5) — (R, S)
Cy: (S;R)— (R,R) — (R,P)— (P,P)— (P,S) — (S,5) — (S,R).

An equivalent description, which we shall not use, may be obtained from the union of the
following two heteroclinic cycles:

Cs: (R,S)— (R,R)— (R,P)— (S,P)— — — ) —
Ci: (S,R)— (R,R)— (P,R) — (P,S) — (5,5) = (R,S) = (R, P) —

The heteroclinic cycles are invariant by the action of I', that is, I'(C;) = Cy, i = 0,1, 2.
Furthermore,

F((R,P)—>(S,P)—>(S,R)) CO
r'(R,S)— (R,R) — (P,R)) =C}
F((S’ R) - (R’ R) - (R’ P)) = Cs.

3.1 Quotient heteroclinic network

The group I' fixes the Nash equilibrium (u*,v*) = (?, @, @, @, ?, ?) in D and acts
freely on D — {(u*,v*)}. Thus, the orbit space D/I' is a stratified manifold with the two
regular strata (D — {(u*,v*)}) /T" and {(u*, v*)}. Since the flow of system (3) is I-equivariant,
it respects the stratification. We work then on the orbit-stratum (D — {(u*,v*)}) /T" and
consider the restriction of the flow of system (3) to this manifold. By the Smooth Lifting
Theorem (theorem 0.2) in Schwarz [27], we get a smooth flow in (D — {(u*,v*)}) /T. The
heteroclinic network ¥ in D drops down to a heteroclinic network ¥p in (D — {(u*,v*)}) /T

which is the union of the following three heteroclinic cycles, as illustrated in figure 2,

Co: §o—& — &
Ci: & —&—&
Co: & — &2 — &o

In what follows, we prove switching near the quotient network ¥, which is considerably
simpler than ¥. By going from the quotient to the original space, we obtain the existence of
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Figure 2: The heteroclinic network .

switching near the heteroclinic network Y. We also show that only the cycle (Y is relatively
asymptotically stable for e, + ¢, < 0, as was numerically observed by Sato et al. [26].
Additionally, we show that cycles C; and C5 are also relatively asymptotically stable for
parameter values satisfying e, + ¢, > 0. The region of stability is however much smaller
in this case, which explains why the stability of these cycles was not observed numerically.
Therefore the network is relatively asymptotically stable.

4 Dynamics near the quotient heteroclinic network

Consider the restriction of the system of differential equations (3) to the 4-dimensional man-
ifold (D — {(u*,v*)}) /T in RS In the restricted flow, consider the quotient heteroclinic
network 3 consisting of the three (hyperbolic) saddle equilibria &, k =0, 1,2 and the three
heteroclinic cycles C;, 1 = 0,1, 2.

Each saddle has 2-dimensional stable and unstable manifolds. We denote by e;; the
positive eigenvalues in the unstable direction, connecting equilibrium §; to equilibrium &,
and by —c;; the negative eigenvalues in the stable direction, connecting equilibrium §; to
equilibrium &;.

In the next result, we provide sufficient conditions for the flow to be C'! linearizable around
each equilibrium &, & = 0,1,2. These are conditions on €,,€¢, € (—1,1) obtained from the
eigenvalues of the linear part of the flow in table 1.

Proposition 4.1. The flow is C' linearizable around each equilibrium &, k = 0,1, 2 provided
all of the following inequalities hold

(1) €z # €y;

(i) €y # 2€, + 1;

(ili) €y # 2¢; — 1;

(iv) €g # 2¢y — 1;

(V) €z # 2y + 1.

Proof. We use the C! extension by Ruelle [24] of Hartman’s results [14]. Ruelle’s sufficient
condition for C* linearization is that

Re()\l) #+ Re()\j) + Re()\k), when Re()\j) <0< Re()\k), (4)

where Re denotes the real part of a number and A; is an eigenvalue of the linear part of the
flow.
At &, the eigenvalues of the linear part of the flow are those in the first row of table 2.
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Table 2: For each saddle & (k = 0,1,2), the table provides the eigenvalues in the directions
of the vectors in the first line. Note that these directions are only defined locally around each
saddle in the fundamental domain D.

We have the following possibilities to verify (4)

-1<0<1 : O#H%; 0#% X
<0<l Sy s ey
TRZ<O<TI : ex—i-ey;é;%; €x + €y F# 2

— 2 <0<1 Do F ey L F L

Given the restriction that €, €, € (—1,1), the only binding condition is €, # €.
At &1, we obtain the same restriction.
At &, we obtain the remaining four restrictions. O

Remark: The necessary and sufficient conditions for C! linearization of Hartman’s [14]
(Theorem 12.1 applied to differential equations) show that linearization is not possible for
subsets of points on the lines described by the restrictions above. These restrictions are a
set of measure zero in parameter space, and place no serious constraint on the analysis that
follows.

From now on assume that €, and ¢, are such that the flow is C' linearizable. In a
neighbourhood of each equilibrium & (k = 0,1,2), we choose coordinates for which the flow
is linear, with the equilibrium at the origin and such that the local stable and unstable
manifolds are coordinate planes. In the system of local coordinates at each &, the flow is
induced by a differential equation of the form below. The directions defined by the first two
coordinates are expanding and the remaining two contracting,

T1 = €k k4171

T = € 4272

T3 = —Ck k4173

&y = —Cp pt2xs (mod 3),

where ey; and —cy; are the eigenvalues as above. The flow near & is then given by
e t e t —cC t —c, t
Fi(ug,ug, ug, ug) = (ug e 1 uge k2" yge™ kk+1t 1y e™®k+25) (mod 3), (5)

where, as stated above, we have chosen the u; and us axes to correspond to the expanding
directions and the us and u4 axes to correspond to the contracting directions.

In table 2, we present the eigenvalues in each local coordinate system. These are obtained
from the original system of differential equations, see table 1.



4.1 Set-up for the dynamics

The dynamics both near each cycle and near the network may be described using the maps
we characterize in this section. This is done following Brannath [3].

Consider a neighbourhood of each saddle where the flow can be linearized and define a
cross-section for each of the four connections in this neighbourhood. The cross-sections are
chosen to be transversal to the connection and the flow. Rescaling the coordinates near each
saddle & (k =0,1,2), the cross-sections may be given by

ferr = {(Lug,ug,ua) 0 0 <ug,ug,ug < ag}
2"‘;%2 = {(u1,1,uz,uqg) : 0<wup,ug,uq < oy}
Eik“’kﬂ = {(u1,ug,l,uq): 0<wup,ug,us < oy}
Yikre = {(ur,ug,uz, 1) 0 <wup,ug,uz < oag} (mod3),

where 0 < i < 1 is a positive number, small enough to guarantee transversality of the
flow near each saddle. The points in EO“; follow the connection from saddle & to saddle ;.
Analogously, the points in E“‘ come from a neighbourhood of saddle §; and are taken close
to saddle &;. A 2- dlmensmnal representatlon of these sections is given in figure 3.

I n
out

k k+1 Dy k1
S
in out

Figure 3: Two-dimensional representation of the cross-sections.

We define the maps W, . ; from a subset of points in X}, to 23 by the following rules,
using the linearized flow:

Cepkt2 Skl Ch k2
_ €k,k+1 €k,k+1 €k,k+1
Uhit g k1 (U, U2, ug) = | gty Uy L UgUy ;

_ Ck,k+2 Ckk+1 °k, k+2>

o el k+1 ek k+1 €k k+1
Whpo b kr1(ur, ug, ug) = | uguy , U3y » Uy )
_ Chk4+1  Ckk+1 Ck, k2
_ €k,k+2 €k,k+2 €k,k+2
Uit g kp2(un, U2, ug) = | uruy ) Usy s UgUs ;
and
ekl Chok+1  Ckk+2
o el k+2 ek, k+2 €k, k+2
Whrok kr2(ut, ug, uz) = | uruy , U3Uy » Ug

From points in a cross-section EO‘“ to E‘“k, we define the maps @ ; taking points along
the connection from saddle & to saddle & in a flow-box fashion as follows

D g1 (U2, uz, ug) = (uaGh g (U2, us, us), usGy i (U2, us, ua), usGy gy (ua, us, ug))
and

D oy (U1, us, ug) = (U1 G poyo(uz, us, ug), usGy o (u2, us, us), usGy o (u2, us, us))

10



where Gk ki J = 1,2,3, i = 1,2, are continuous functions satisfying ¢ < Gk pyi < C for
some constants c, C > 0.

We define the maps €; 1, j;, from X", to E}“j, through the neighbourhoods of saddles &
and §;, as follows (see figure 4)

Qikjr=PjroVpji0Prjo Wik,
taking points through the following sequence of cross-sections
ikl?l SN Zout' SN E;:k SN 23:1 — Em
Notice that the maps €); . ; 1. are first-return maps from E};Z to itself.

OUI

Figure 4: Representation of the cross-sections in the definition of €; . ;.

By the Implicit Function Theorem, each map ® j; is a diffeomorphism between neigh-
bourhoods of (0,0,0). We may then approximate the maps ® by the identity, simplifying
further calculations. From now on, we consider €; ; j; = Wy ;0 W ;.

Next, we characterize the set of points that are taken from X k“z to EO‘“ for each 7,4,k =
{0,1,2} and k # 4, j, that is, points for which W, ; is well- defined.

So as not to make notation too cumbersome, we provide detail for Wy 1 1 x+1, all other
cases being similar. Consider the unit cube containing the cross-section Ek‘ k1

Q = {(u1,u2, L,uqg) : 0 <up,ug,ug <1} = {(ug,uo,uq): 0 < ug,ug,uq <1}

Similarly, there is a unit cube, @' containing the cross-section E%“,'; 41+ Analogously to Bran-
nath [3], we may view ¥, ; as a map from Q to Q'. Denote by C*1EA+1 the set of points
in Q that are taken by Wi x+1 into Q. Since this assumes that there is a neighbourhood
of (0,0,1,0), containing Q, where the flow is linear and transverse to Q, which may not be
the case, the domain of definition of Wy 141 is obtained by intersecting ChFLEE+L with
an open neighbourhood of the origin. We therefore focus on the study of the sets C**J
describing the domain of definition of ¥;j ;. We have

Cehkt2  Chkdl k12
. k1 Ch k41 Chk+ly (=  —  —
Uit k1 (U1, U2, ug) = (ugty Uy uguy ) = (g, U3, ),

: €k, k+2 Ck,k+1 Ck,k+2 : :
with — o kL < 0, o I:rl > 0 and I > 0. So, Uit14k4+1(Q) C Q if and only if ug <
€k,k+2

Ck,k+1 .
uy " We obtain

Ck,k+2
CktLRkE+L — {(u1,u2,1,uqg) € Q:ug < u1'C ALY

€k k42
€k k+1

less or greater than one. We note that the complement of C*%J in Q is C**! with [ # j.
This is consistent with the fact that the dynamics are conservative in the original set-up in
Sato et al. [26].

Below, we describe the sets C%*7J for all maps ¥, obtained using the eigenvalues in table

Geometric representations of these points can be found in figure 5 for the two cases

2:

ltex

Ci’o’l = {(ul,uQ,vi) < Q: Uy < Uq 2 }

11



-
=
=

Y Y

Figure 5: The left-hand side picture refers to the case =:£+2 < 1 and the right-hand side

€k, k+1

picture to Z:ﬁ > 1. In each case, the set CFt1LEF+1 consists of the points in the shaded

region. The remaining points are those in CF+1LEk+2,
Whel"e 1= 1’ 2’ V1 = U4, Vg = U3 and 017072 — Q\CZ,O,l;

2
Cz,l,o — {(U17u27vi) (= Q ) > u11+ey}

where i = 0,2, vg = u3, vo = u4 and C»H2 = Q\CH1Y;

l—eg

Ci’2’0 = {(ul,ug,vi) S Q Dug < ull_ey}

where i = 0,1, vg = uy, v1 = uz and C»>! = Q\C%?9,
The domain of definition for the maps €; 1 ;; = Wy ;1 0 ¥, ; is obtained from the sets
above and is described by

{(Ul,Ug,U) S Ci’kJ : \I/i,k,j(ulau%'l)) C Ckvjvl}’

where v = ug or v = uy, depending on ¢, k and j.

4.2 Switching at the nodes

As in Aguiar et al. [1], we say there is switching at a node ¢ if, for any neighbourhood of a
point in a connection leading to node £ of a network, there exist trajectories starting in that
neighbourhood that follow along all the possible connections forward from &.

Theorem 4.2. There is switching at every node of the network Xr.

Proof. We prove switching at a generic node ;. Consider a connection [{; — &]. Let
p = (0,0,0) in 33", be the point corresponding to the intersection of the connection [§; — &]
with E};‘Z Let Up7 be a neighbourhood of p and set V = U, N Z‘k“Z For any neighbourhood
U, the set V' contains points in C"kJ and points in the complement of C**J in Z‘I:Z Points

in C%*J follow the connection [£x — &;] and points in the complement follow the connection
(€ — &) from & thus proving switching at node &. O

4.3 Switching along the connections

We say there is switching along a connection [§, — &;] if, for any neighbourhood of a point in
a connection leading to node &, there exist trajectories starting in that neighbourhood that
follow along the connection [, — &;] and then along all the possible connections forward
from &;.

Note that switching at the nodes of the network does not guarantee switching along the
connections.

This subsection establishes switching along every connection of the quotient heteroclinic
network Yp. We present a detailed proof for the case of the connection [§; — &y]. The proof
for the remaining connections is analogous.

12



We shall abuse notation, so as not to make it cumbersome, and refer to C**J when what
we mean is its intersection with the appropriate cross-section. Also, we shall use the cross-
sections 277 and Z;f'j when we are, in fact, calculating in the corresponding cubes Q' and Q
(as in the case in the definition of F*J below).

Consider the connection [§; — &p]. Points in 3§, are going to be sent to both 3§ and
20", as we saw in theorem 4.2. We show in theorem 4.4 that the set, C101 of points going
into 3¢ and the set, C192, of points going into 33" include points that come from both
Yo and X5, thus establishing switching along the connection [§1 — &o]. See figure 6.

E0
. o5
in out
210 Zo1
out in
z 10 201
g, g,
() 0\
out
zi1nz *0z
[ ) [
g, &

Figure 6: Behaviour along, before and after the connection [{; — &p].

Define
Fihi={X esgt: AX e B0 X =Ty55(X)} =45 (C’“) :

the set of points in ¥3"; whose trajectory comes from DY
Switching along a connection [§ — &;] requires that Fiki Okl £ () for i # j and k # L.
In the next proposition we provide a description of the sets F*J.

Proposition 4.3. The sets F"*J for the network Y1 are as follows

l—ey

FO,l,j — {(Uj,u3,u4) c (17?6 tug < Uy 2 }

where 7 = 0,2, vg = U1, Vo = up and F>H = E{“}\Fo’l’j;

‘ l—ey
FY9 = {(vj,uz,ua) € X8% 0 ug <uy? )

where j = 1,2, v1 = us, vy = uy and F?0% = Yeu\ pL.OJ.
] ’ 07] )

) l1+ey
FO%7 = {(vj,ug,us) € 5"+ ug <ug ™}

where 7 = 0,1, vg = ug, v1 = u; and FH%J = E%“}\FO’QJ.

Proof. We provide a detailed proof for F%0. The other sets are obtained in an analogous
way.
By definition, F%%0 is the image of C%!0 by Wo,1,0. From section 4.1, we know that
2

CO,l,O = {(ul,ug,u;:,) € Q: ug > u11+75y

13



and, using table 2, we have

€12 €1,2 €1,0
€1,0 €1,0 €1,0\ __

‘110,1,0(U1,U2,U3) = (Uluz y U3Ug Uy ) =
_1+5y l—eg

= (ul’u,2 2 , U3 2 ,UQ) = (al,fbg,fm) € Ei?(t]
In order to provide conditions for (@1, s, s) to be in FO10 we calculate the image of the

boundary of C%!0 as follows
2
1
e when up = u, ", we have

l—ex 2
2 Ite _
o 1,0(ut, uz, uz) = (1, ugu, Y ug) = (U, us, Us).
1+2 l—egx
. . . . . p— — € — — .
This is satisfied if and only if 4 = 1, 44 = u; ? = ug and u3 = usu, > , with

l—eg

ug € [0,1]. Hence, uz < u, *

e when us = 1, we have
U 10(u,ug,uz) = (u1,us, 1) = (1, U3, U4),
which occurs when a4 = 1.

e when u; = 0, we obtain
l—ep
Wo,1,0(u1,u2,u3) = (0,uguy > ,ug) = (U1, U3, Us)-
l—eq
This is satisfied for 4; =0, ug = usu, ? , with uz € [0,1], and a4 € [0, 1].

l—eg

Therefore, FO0 = {(u1,us,us) € B9 : ug <uy ? }. O

Remark: We point out that proposition 4.3 does not require any assumption on @y ;.
Theorem 4.4. There is switching along every connection of the network .

Proof. The proof consists in showing that F**J intersects C*J:,

Similarly to what was done in the proof of proposition 4.3, we prove the result for F%%0
and the sets C1%! and C19%2, The remaining cases are analogous.

Since @ is the identity, we can describe F®10 in ¥, by changing coordinates from
(u1,us,uq) in it to (u1,ug,uyq) in Eb‘:l. We then have

l—ey

FOLO — {(u1,u2,uq) € Eioril ug <uy® o}

From section 4.1, we know that

101 _ n e
C00 = {(ur,ug,uq) € g1 0 ug <uy® }

and
14ex

01’0’2 = {(ul,UQ,U4) c Zio':l DU > Uy 2

The intersections F%10 0 C101 and F%1.0 0 0102 and their complements are pictured in
figure 7. These are

1+eg l—eg

0,1,0 1,01 _ in_ .
F NncC = {(u1,ug,uq) € Yy ug < min{u; * ,u, ? }},
0,1,0 ~ (1,02 ; e e
F2rn 0™ = {(ur,uz,uq) € 557 tuy ? <wg <uy® )
l+eg l—eg
Since, for F%10NC10:2 to make sense, we are implicitly assuming up o <uy o, FOLOnC101
1+eg
then becomes {(u,uz,us) € X'y 1 ug <uy * }. O
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E O,l,OF] Cl,O,l

E 2,1,0n Cl,0,2

E 2,1,0n Cl,O,l

Figure 7: Intersections of F“10 with C194 § = 0,2 and [ = 1,2, inside 6

4.4 Switching near the network

If theorem 4.4 can be iterated a finite number of times then it induces finite switching near the
network Yp. For that to happen, the F-sets in theorem 4.4 are not allowed to, for instance,
be contained in just one C-set after a finite number of iterates, but they have to intersect
all of them. If we can prove that the process may be continued forever then we get infinite
switching.

Theorem 4.5. There is infinite switching near the network .

Proof. The computations in the proof of theorem 4.4 show that the intersection of F*J with
C*3l is the intersection of open neighbourhoods of the origin inside E%“; o~ Zij':k.

In fact, the exponents z:ﬁ, with 4,7 € {1,2} in the definition (see subsection 4.1) of
the maps Wik i44, kK € {0,1,2}, are positive, and so the second and third coordinates of

. . o . e e
the image tend to zero when approaching the origin. The exponents —ﬁ —ﬁ are

negative but, taking into account the domain of definition of the maps (the sets C**J) it is

easy to verify that the first coordinate of the image also tends to zero when approaching the

origin. This guarantees that we can iterate theorem 4.4 an infinite number of times.
Moreover, the boundaries of F*J and C*J! intersect transversally inside Zij':k. Since the

sets C"FJ are described by conditions involving only the first two coordinates u; and o, we
will analize the behaviour in these two coordinates. From now on, we will then be considering
implicitly that we are working on planes ug = k or uq = k, for constant k.

As we will see, the maps Wy rtj, k € {0,1,2} are expanding in the first coordinate.
We show that neighbourhoods of the origin in C**J are sent to horizontal strips through
the whole of the Z"“; that accumulate on the horizontal axis. This proves that the F-sets
intersect all of the C-sets.

If we parametrize CH%! by

l+eg
(ur,ug,uq) with 0 <wug <wuy? ,

then each vertical segment u; = uy of length u_lH% is transformed into the horizontal seg-
ment us = wy with length 1. So, small vertical segments near the origin are streched and
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transformed into transverse segments.

Thus, the image of C%%! is the whole of o

All the segments u; = « intersect transversally the curves in the parametrizations of the
sets COH0 and C%12 in B

If we parametrize C1%2 by
2
1 1+eg
(u17u27u4) with 0 <wu; < Uy ,

then each horizontal segment us = wug of length u_gﬁ is transformed into the horizontal
segment ug = u_gﬁ with length 1. So, small horizontal segments near the origin are stretched
and transformed into parallel segments.

Thus, the image of C1%? is the whole of 25

All these segments intersect transversally the curves in the parametrizations of the sets
C%29 and C%21! in 25

We get analogous results for the remaining sets and maps.

O

Note that the switching we have just established using the Poincaré maps translates triv-
ially into switching in the flow. Using the symmetry, we obtain switching near the heteroclinic
network ¥ of the dynamics of the Rock-Scissors-Paper game (see section 5 below).

4.5 Stability of the cycles and of the network

Analysing the conditions that define the sets C**J we conclude that the region of points, in
both X, and 23’72, whose trajectory follows the connection [{y — &;] is significantly bigger
than that of points whose trajectory follows the connection [§y — &2]. Analogously, for X,
and X, and the connections [§; — o] and [§1 — &), respectively. This suggests that,
together with the existence of infinite switching, there is a preference for one particular cycle,
namely Cjy. This implies some stability property for the cycle Cy.

We thus address the issue of stability for the cycles Cy (k =0, 1,2) connecting equilibria
&k and &k11 (mod 3) on the network. We use the notions of relative asymptotic stability and
essential asymptotic stability used by Brannath [3] and which we include here for completion.
Consider a flow on a compact metric space X.

Definition 4.6 (Definition 1.1 in [3]). Given any subset N of X, a closed invariant subset
A of N (N the closure of N ) is said to be “stable, relatively to the set N7, or “stable in N7,
if for every neighbourhood U of A there is a neighbourhood V' of A, such that

VeeVNN: z(t)eU VYt>0.

Let us call A “attracting” for M C X if for every x € M the w-limit w(x) is a subset of A.
Then A is said to be “asymptotically stable, relatively to N7, or “asymptotically stable in N7,
if it is stable in N and there is a neighbourhood V' of A such that A is attracting for VN N.

Definition 4.7 (Definition 1.2 in [3]). A closed subset A of X, X € R", is “essentially
asymptotically stable” if it is asymptotically stable relative to a set N which satisfies

(BN N) _
e—0 N(BE(A)) ’

where B.(A) ={z € X : dist(x, A) < e} and p is the Lebesque measure.

Note that the second notion is stronger than, and therefore implies, the first.
We have the following result on the stability of the cycles.
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Theorem 4.8. The relative asymptotic stability of the cycles Cy, C1 and Cy depends on the
sign of € + €y as follows:

o if e; + ¢y, <0, then only the cycle Cy is relatively asymptotically stable.

o if e, + ¢y, > 0, then only the cycles C1 and Co are relatively asymptotically stable.

Proof. We prove results concerning the stability of cycle Cy in detail. The statements con-
cerning the other two cycles follow in an analogous way.
We analyze the flow in a neighbourhood of the cycle Cy, using the return map

in

M010: 201 — Xog

_602610+612601 cp2¢€10tc01¢12 €01°€10
€01€10 €01€10 €01€10
(ur,ug,ug) —  (uguy , UgUy LUy ).

Given the values for e;; and ¢;; in table 2, we have

_2+em+ey 275175y

Qio10(ur,ug,ug) = (uouy % Juguy > up).
This is contracting if and only if, using the Euclidean norm ||.|],
[1€21,0,1,0(u1, w2, ua)|| < ||(u1,u2,uq)ll-
The following inequalities guarantee contractiveness:
4+em+ey
up <uy ?
—24extey
ug < ugy ° ’ (6)
up < Uyg

Let A* be the set of points in the domain of © ¢ 1 ¢ satisfying inequalities (6). The domain

of QLO,LO is
) 2+4€eg +ey
mn

Do, 1,0 = {(u1,uz,us) € 55 ug <y
From the last two inequalities of (6), we have

d—ex—ey
ug >uy

The above together with the first inequality of (6) gives

475175y 4+51+5y
u 2 <wuy ?

which holds provided €, + ¢, < 0. Thus Cj is attracting, since it is a fixed point for the
return map. This implies that Cj is relatively asymptotically stable with respect to N, if
€z + €, <0, for

N = {Fi(ui,ug, 1,ug) : (ug,ug,ug) € A% t > 0},

where F; is as in (5).
When €, + ¢, > 0, we look at the eigenvalues of the Jacobian matrix of €2191,0. This
matrix is

e e —4d—ex—ey —2—ex—ey
ug———">u;  ° u; 0
. —ex—ey 2—ex—ey
JQl,o,l,o = u42*€;*5y uy 2 0 uli
1 0 0

The eigenvalues are such that their product is
Det = u; .

Since 0 < uj < 1, we have u; " > 1 when ¢, + ¢, > 0. Therefore, Cj is unstable thus
showing that for €, +¢€, > 0, at most the cycle C1 and Cy are relatively asymptotically stable.
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Concerning the cycle C1, contractiveness occurs for €, +¢€, > 0 as can be seen by looking
at the return map

Qo121: 387y — X,

)Ly

_3—ey 3+ex
1+4€q, 1+4€q,
(u17u27u4) = (’LLQ’LLl v ,’LL4’LL1 v 7u1)7
and the following inequalities
4
it
ug < uy Y
_ 3tex
1
uy < ugu; Y
w1 < Uy

The set N for which (] is relatively asymptotically stable is defined in an analogous way to
that of the cycle Cy.

When €, + ¢, < 0, the cycle (7 is not relatively asymptotically stable since, for the
Jacobian matrix of €291 21, we have that the determinant is

em+ey
1+e
Det =u; "7 .

This is greater than one when €, + ¢, < 0.
As for the stability of the cycle Cs, we use the return map

Qo202:X50 — X9

_3—e€x 3tey
l—ey l—ey
(u17u27u4) — (u2u1 7u4u1 ,’I,Ll),
and the inequalities
d—ex—ey
1—
ug <wuy; Y
3+ey
- l—ey
Ug < UUq
U < Uyg

to show that () is relatively asymptotically stable with respect to a set N defined as analo-
gously when €, + ¢, > 0.
If e, + ¢, < 0, the eigenvalues of the Jacobian matrix are such that the determinant

satisfies
em+ey
Det = u,' ™ .
This is greater than one when €, + ¢, < 0, finishing the proof of the theorem. O

Theorem 4.9. None of the cycles C;, i =0, 1,2, is essentially asymptotically stable.

Proof. That Cj is not stable when €, + ¢, > 0 and that C; and Cy are not stable when
€; + €, < 0 follows from the previous proof.
Otherwise, the sets N defined in the previous proof are such that, for : = 0,1, 2,

NN B.(C;
lim p(N N B(C)))
=0 u(B:(Cy))
O
We note also that it is not strange that numerical simulations have spotted the preference,

reflected in relative asymptotic stability, for cycle Cy but not for cycles C7 or Cs. In fact,
the domain of the return maps near the cycles C; and Cs are as follows

3—ey

DQ2,1,2,1 = {(u17u27u4) € Ziln,Q Dug < ulHEy}
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and

3—eg

Dy p00 = {(u1,u2,u4) € 50 1 up < u; Y.

The domain Dgq, o, ,, when €, + ¢, < 0, has bigger volume than these two domains when
€z + €y > 0. See figure 8.

fop 4

Y ) Y

Figure 8: The figure on the left shows Dgq, ,,, when €; + €, < 0. On the right, we have a
representation of Dq,,,, and Dq,,,, when €; + ¢, > 0.

We have the following result concerning the stability of the network.
Theorem 4.10. The network Xt is relatively asymptotically stable.

Proof. The dynamics described in the previous subsections show that there is a flow-invariant
neighbourhood of the network. The stability results obtained in this subsection guarantee
that, depending on the sign of €, +¢,, there is a subset N of the flow-invariant neighbourhood
satisfying the conditions of definition 4.6, but not of definition 4.7, such that trajectories,
starting in NV, are attracted to at least one of the cycles of the network. O

5 Dynamics near the heteroclinic network in the RSP game

In this section, we show how the switching near the quocient heteroclinic network > can be
lifted to the original network 3 of the RSP game. We use lemma 12 in Aguiar et al. [1]. We
restate here, in the context of the present problem, both lemma 12 and its hypothesis for
completion.

Assume that

& The finite group I' acts orthogonally on a manifold M, with a subgroup G acting freely
on M.
f is a I'-equivariant vector field on M with a I'-invariant network of equilibria 3.
For any two nodes n1, no in X there is at most one trajectory connecting ny to ng in 3.
The only element of G that fixes a node in ¥ is the identity.

In the game of RSP, G and I are the same. The manifold M is D —{(u*,v*)}. The vector
field f is given by equations (3).

Lemma 5.1. [Lemma 12 in [1]] Let f be a vector field on M with a network of equilibria %
satisfying & and let Xy = X /T" be the quotient network on M /T for the quotient vector field.
Then any two paths on X that coincide in one node and that drop down to the same path on
Yr are the same.

As an immediate consequence of lemma 5.1, we obtain switching along the connections.
Furthermore, we have

Theorem 5.2. There is infinite switching near the network 3.
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Proof. The lifted images of the sets C**7J and those of the maps W ti kkt; satisfy the prop-
erties in the proof of proposition 4.5. Thus, there is switching near the original network since
Y is the group orbit of Xr. O

The existence of infinite switching guarantees that all possible sequences of play are
realized by some trajectory. We then have, depending on initial conditions, trajectories that
follow very simple paths near the network and trajectories following random-like sequences.
Thus, depending on the initial choice of action, we will observe from very simple to extremely
complex sequences of play. In particular, similar initial actions may lead to very distinct
sequences of play.

The stability results obtained in subsection 4.5 are preserved under the symmetry. There-
fore, the stability results extend trivially to the cycles in the original network X, through the
group orbit of the cycles in the quotient network. These results support the observation made
by Sato et al. [26] concerning the fact that for e, + €, < 0 agents seem to play according to
the connections describing cycle Cy. Recall that the cycle Cy connects equilibria for which
agent Y wins over agent X, to equilibria where the reverse happens. Thus for €, + ¢, < 0,
that is, when at least one agent is more penalized than the other is rewarded for a tie, ties
are avoided. When €, + ¢, > 0 ties are more rewarded for at least one agent than penalized
for the other. In this case, the relative asymptotic stability of cycles C1 and Cy shows that
agents play for ties.

6 Concluding remarks

We describe asymptotic behaviour in a simple two-person learning game, where there is no
convergence to the Nash equilibrium. We show that the asymptotic behaviour is determined
by the existence of a heteroclinic network for the dynamics and chaotic switching near this
network.

The presence of switching means that every path on the network is followed by a trajectory
for the dynamics of play. The paths may be as simple as cycles (closed loops of strategies) or
chaotic-like (following a random sequence of strategies), thus showing that in a game as simple
as the Rock-Scissors-Paper game, players’ strategies induce a variety of actions, ranging from
almost deterministic to chaotic-like actions. Even though all sequences of actions are possible,
they are not equally likely. Depending on initial conditions and the reward or penalty for
ties, there is a preference for a particular sequence involving actions leading to, or avoiding,
ties.

We make strong use of symmetry to obtain our results. Our techniques may be applied
to any game with similar characteristics.

The generalization to more than two players is out of the scope of this paper and will
appear elsewhere. The case of two players and more than three actions seems to be harder
to tackle and to require a different mathematical approach.

Acknowledgements: The authors are grateful to J. Hofbauer, I. Labouriau, C.M. Menezes
and Y. Sato for fruitful conversations.

This work was partially supported by Centro de Matematica da Universidade do Porto
(CMUP) and Fundagao para a Ciéncia e Tecnologia, through the programmes POCTI and
POSI.

References

[1] M.A.D. Aguiar, S.B.S.D. Castro and I.S. Labouriau (2005) Dynamics near a heteroclinic
network. Nonlinearity 18, 391-414.

20



2]

[18]

[19]

[20]

U. Berger (2005) Fictitious play in 2 x n games. Journal of Economic Theory 120,
139-154.

W. Brannath (1994) Heteroclinic networks on the tetrahedron. Nonlinearity 7, 1367
1384.

G.E. Bredon (1972) Introduction to Compact transformation Groups, Pure and Applied
Mathematics 46, Academic Press, New York, London.

T. Chawanya (1997) Coexistence of infinitely many attractors in a simple flow. Physica
D, 109, 201-241.

P. Chossat and R. Lauterbach (2000) Methods in Equivariant Bifurcations and Dynam-
ical Systems, Advanced Series in Nonlinear Dynamics Vol. 15, World Scientific, Singa-
pore.

I. Erev and A. Roth (2007) Multi-agent learning and the descriptive value of simple
models. Artifical Intelligence 171, 423-428.

N. Feltovich (1999) Equilibrium and reinforcement learning in private-information
games: an experimental study. Journal of Economic Dynamics and Control 23, 1605—
1632.

M.J. Field (1996) Lectures on Bifurcations, Dynamics and Symmetry, Pitman Research
Notes in Mathematics Series 356, Logman

D. Fudenberg and D.K. Levine (1998) Theory of Learning in Games, MIT Press.

D. Fudenberg and D.K. Levine (2008) Learning and Equilibrium, unpublished
manuscript.

M. Golubitsky and D.G. Schaeffer (1988) Singularities and Groups in Bifurcation Theory,
Vol. IT | Springer-Verlag

J. Guckenheimer and P. Holmes (1988) Structurally stable heteroclinic cycles, Math.
Proc. Cambridge Philos. Soc. 103, 189 — 192.

P. Hartman (1964) Ordinary differential equations, Wiley, New York.

J. Henrich, R. Boyd, S. Bowles, C. Camerer, E. Fehr, H. Gintis and R. McElreath (2001)
In search of Homo Economicus: behavioral experiments in 15 small-scale societies. AEA
Papers and Proceedings, 73-78.

J. Hofbauer (1994) Heteroclinic cycles in ecological differential equations. Tatra Moun-
tains Math. Publ., 4, 105-116.

J. Hofbauer and K. Sigmund (1998) The theory of evolution and dynamical systems,
CUP Press.

J. Hofbauer and K. Sigmund (1998) Ewvolutionary Games and Population Dynamics,
CUP Press.

J. Hofbauer and K. Sigmund (2003) Evolutionary Game Dynamics. Bulletin of the Amer-
ican Mathematical Society, 40 (4), 479-519.

L.R. Izquierdo, S.S. Izquierdo, N.M. Gotts and J.G. Polhill (2007) Transient and asymp-
totic dynamics of reinformcement learning in games. Games and Economic Behavior, 61,
259-276.

21



[21]

[22]

[23]

[26]

[27]

[28]

M. Krupa (1997) Robust Heteroclinic Cycles, J. Nonlinear Science, Vol. 7 | 129-176

D. Richards (1997) The geometry of inductive reasoning in games. Economic Theory 10,
185-193.

A. Roth and I. Erev (1995) Learning in extensive-form games: experimental data and
simple dynamic models in the intermediate term. Games and Economic Behavior 8,
164-212.

D. Ruelle (1989) Elements of differentiable dynamics and bifurcation theory, Academic
Press, New York.

Y. Sato, E. Akiyama and J. Doyne Farmer (2002) Chaos in learning a simple two-person
game, Proc. Natl. Acad. Sci. USA, Vol. 99, 47484751

Y. Sato, E. Akiyama and J.P. Crutchfield (2005) Stability and Diversity in Collective
Adaptation, Physica D, Vol. 210, 21-57

G. Schwarz (1980) Lifting smooth homotopies of orbit spaces,Inst. Hautes Etudes Sci.
Publ. Math., 51, pages 37-135

L.S. Shapley (1964) Some topics in two-person games, In: Advances in Game Theory.
Princeton University Press, Princeton, 1-28.

C. Sparrow, S. van Strien and C. Harris (2008) Fictitious play in 3 x 3 games: the
transient between periodic and chaotic behavior, Games and Economic Behavior, 63,
259-291.

22



N° 304

N° 303

N° 302

N° 301

N° 300

N° 299

N© 298

Ne 297
N° 296

Ne 295

No 294

No 293

Ne 292

Ne 291

N° 290
N° 289

N° 288

No 287

N° 286

Ne 285

NO 284

N© 283

Ne 282

No 281

N° 280

Recent FEP Working Papers

Ana Pinto Borges and Jodo Correia-da-Silva “Using Cost Observation to Regulate
Bureaucratic Firms”, December 2008

Miguel Fonseca “The Investment Development Path Hypothesis: a Panel Data
Approach to the Portuguese Case”, December 2008

Alexandre Almeida, Cristina Santos and Mario Rui Silva “Bridging Science to
Economy: The Role of Science and Technologic Parks in Innovation Strategies in
"Follower” Regions”, November 2008

Alexandre Almeida, Anténio Figueiredo and Mario Rui Silva “From Concept to
Policy: Building Regional Innovation Systems in Follower Regions”, November 2008
Pedro Quelhas Brito, “Conceptualizing and illustrating the digital lifestyle of youth”,
October 2008

Argentino Pessoa, “Tourism and Regional Competitiveness: the Case of the
Portuguese Douro Valley”, October 2008

Aurora A.C. Teixeira and Todd Davey “Attitudes of Higher Education students to
new venture creation: a preliminary approach to the Portuguese case”, October
2008

Carlos Brito “Uma Abordagem Relacional ao Valor da Marca”, October 2008

Pedro Rui M. Gil, Paulo Brito and Oscar Afonso “A Model of Quality Ladders with
Horizontal Entry”, October 2008

Maria Manuel Pinho, “The political economy of public spending composition:
evidence from a panel of OECD countries”, October 2008

Pedro Cosme da Costa Vieira, "0 Subsidio de Desemprego e a Relacdo Negativa
entre Salario e Risco de Faléncia: Uma Teoria em Equilibrio Parcial”, October 2008
Cristina Santos, Alexandre Almeida and Aurora A.C. Teixeira, “Searching for
clusters in tourism. A quantitative methodological proposal”, September 2008
Alexandre Almeida and Aurora A.C. Teixeira, “One size does not fit all... An
economic development perspective on the asymmetric impact of Patents on R&D”,
September 2008

Paula Neto, Anténio Branddo and Anténio Cerqueira, “The Impact of FDI, Cross
Border Mergers and Acquisitions and Greenfield Investments on Economic
Growth”, September 2008

Cosme, P., “Integrating fire risk into the management of forests”, September 2008
Cosme, P., "A comment on efficiency gains and myopic antitrust authority in a
dynamic merger game”, September 2008

Moreira, R., “Workart - A Gestdo e a Arte” (1st Prize of the 2nd Edition of
FEP/AEFEP- Applied Research in Economics and Management), August 2008
Vasco Leite, Sofia B.S.D. Castro and Jodo Correia-da-Silva, “The core periphery
model with asymmetric inter-regional and intra-regional trade costs”, August 2008
Jorge M. S. Valente and Maria R. A. Moreira, “Greedy randomized dispatching
heuristics for the single machine scheduling problem with quadratic earliness and
tardiness penalties”, August 2008

Patricia Teixeira Lopes and Rui Couto Viana, “The transition to IFRS: disclosures by
Portuguese listed companies”, August 2008

Argentino Pessoa, “Educational Reform in Developing Countries: Private
Involvement and Partnerships”, July 2008

Pedro Rui Mazeda Gil and Oscar Afonso, “Technological-Knowledge Dynamics in
Lab-Equipment Models of Quality Ladders”, July 2008

Filipe J. Sousa and Luis M. de Castro, “How is the relationship significance brought
about? A critical realist approach”, July 2008

Paula Neto; Antdnio Branddo and Antdnio Cerqueira, “The Macroeconomic
Determinants of Cross Border Mergers and Acquisitions and Greenfield
Investments”, June 2008

Octavio Figueiredo, Paulo Guimardes and Douglas Woodward, “Vertical
Disintegration in Marshallian Industrial Districts”, June 2008




No 279

No 278

No 277

NO 276

No 275

No 274

No 273

No 272

No 271

No 270

N° 269

N° 268
Ne 267
N° 266

NO 265

NO 264

N° 263

NO 262

No 261

N° 260

Ne 259

Ne 258

No 257

Jorge M. S. Valente, “Beam search heuristics for quadratic earliness and tardiness
scheduling”, June 2008

Nuno Torres and Oscar Afonso, “Re-evaluating the impact of natural resources on
economic growth”, June 2008

Inés Drumond, “Bank Capital Requirements, Business Cycle Fluctuations and the
Basel Accords: A Synthesis”, June 2008

Pedro Rui Mazeda Gil, “Stylized Facts and Other Empirical Evidence on Firm
Dynamics, Business Cycle and Growth”, May 2008

Teresa Dieguez and Aurora A.C. Teixeira, “ICTs and Family Physicians Human
Capital Upgrading. Delightful Chimera or Harsh Reality?”, May 2008

Teresa M. Fernandes, Joao F. Proenga and P.K. Kannan, “The Relationships in
Marketing: Contribution of a Historical Perspective”, May 2008

Paulo Guimardes, Octavio Figueiredo and Douglas Woodward, “Dartboard Tests for
the Location Quotient”, April 2008

Rui Leite and Oscar Afonso, “Effects of learning-by-doing, technology-adoption
costs and wage inequality”, April 2008

Aurora A.C. Teixeira, “National Systems of Innovation: a bibliometric appraisal”,
April 2008

Tiago Mata, “An uncertain dollar: The Wall Street Journal, the New York Times and
the monetary crisis of 1971 to 1973”, April 2008

Jodo Correia-da-Silva and Carlos Hervés-Beloso, “General equilibrium with private
state verification”, March 2008

Carlos Brito, “Relationship Marketing: From Its Origins to the Current Streams of
Research”, March 2008

Argentino Pessoa, “Kuznets’s Hypothesis And The Data Constraint”, February 2008
Argentino Pessoa, “Public-Private Sector Partnerships In Developing Countries: Are
Infrastructures Responding To The New Oda Strategy”, February 2008

Alvaro Aguiar and Ana Paula Ribeiro, “Why Do Central Banks Push for Structural
Reforms? The Case of a Reform in the Labor Market”, February 2008

Jorge M. S. Valente and José Fernando Gongalves, “A genetic algorithm approach
for the single machine scheduling problem with linear earliness and quadratic
tardiness penalties”, January 2008

Ana Oliveira-Brochado and Francisco Vitorino Martins, "Determining the Number of
Market Segments Using an Experimental Design”, January 2008

Ana Oliveira-Brochado and Francisco Vitorino Martins, "Segmentacéo de mercado e
modelos mistura de regressdo para variaveis normais”, January 2008

Ana Oliveira-Brochado and Francisco Vitorino Martins, "Aspectos Metodoldgicos da
Segmentacdo de Mercado: Base de Segmentacdo e Métodos de Classificacdo”,
January 2008

Jodo Correia-da-Silva, "Agreeing to disagree in a countable space of equiprobable
states”, January 2008

Rui Cunha Marques and Ana Oliveira-Brochado, "Comparing Airport regulation in
Europe: Is there need for a European Regulator?”, December 2007

Ana Oliveira-Brochado and Rui Cunha Marques, "Comparing alternative
instruments to measure service quality in higher education”, December 2007

Sara C. Santos Cruz and Aurora A.C. Teixeira, "A new look into the evolution of
clusters literature. A bibliometric exercise”, December 2007

Editor: Sandra Silva (sandras@fep.up.pt)
Download available at:
http://www.fep.up.pt/investigacao/workingpapers/workingpapers.htm

also in http://ideas.repec.org/PaperSeries.html




FAcUuLDADE DE ECONOMIA DA UNIVERSIDADE DO PORTO
Rua Dr. Roberto Frias, 4200-464 Porto | Tel. 225 571 100

Tel. 225571100 | www.fep.up.pt

www.fep.up.pt





