16 research outputs found

    Isolation of human bone marrow mesenchymal stem cells and evaluation of their osteogenic potential

    Get PDF
    Las células madre mesenquimatosas de médula ósea humana (abreviadas hBMSCs) constituyen una fuente de células auto-renovables con alto potencial de diferenciación, comúnmente aisladas a partir de los aspirados medulares en huesos largos. Su diferenciación hacia el linaje osteogénico, por ejemplo, ha sido ampliamente utilizada para la evaluación biológica de biomateriales o matrices con aplicaciones en la ingeniería de tejidos óseos. El objetivo de este trabajo consistió en aislar hBMSCs a partir de la cabeza femoral de pacientes sometidos a artroplastia total de cadera, así como evaluar su potencial osteogénico. Brevemente, se extrajo el hueso esponjoso y se disgregó mecánicamente; las células desprendidas se cultivaron y las células no adherentes se eliminaron luego de 4 días. El potencial osteogénico se evaluó en la quinta generación de cultivo, mediante ensayos de diferenciación a 14 y 20 días donde se compararon cultivos con y sin suplementos osteogénicos. La evaluación se realizó mediante tinción con Alizarina Roja y la cuantificación de los niveles de expresión génica de los marcadores osteogénicos colágeno tipo I, osteonectinca y sialoprotiena ósea mediante RT-PCR en tiempo real. Las hBMSCs obtenidas presentaron un fenotipo no-diferenciado estable, así como la capacidad de mineralizar la matriz extracelular y expresar un fenotipo similar al osteoblasto durante la inducción osteogénica. Los tres marcadores evaluados se sobre-expresaron en los cultivos en condiciones osteogénicas, y se encontró que cambios hasta de 2X en sus niveles de expresión son relevantes para el desarrollo del proceso de diferenciación. El modelo de hBMSCS presentado podría ser utilizado para la evaluación in vitro de la osteoinductividad de diferentes biomateriales, moléculas bioactivas o matrices para ingeniería de tejidos.Human bone marrow mesenchymal stem cells (hBMSCs) comprise a cell population capable of self-renewal and multilineage differentiation commonly isolated from bone marrow aspirates of large bones. Their osteogenic potential has been extensively exploited for the biological evaluation of scaffolds or biomaterials with applications in bone tissue engineering. This work aimed to isolate hBMSCs from femoral heads of patients undergoing total hip arthroplasty and to evaluate their osteogenic potential. Briefly, the trabecular bone was extracted and mechanically disaggregated; the released cells were cultured and non-adherent cells were removed after 4 days. The osteogenic potential was evaluated at the fifth passage after 14 and 20 days of induction, comparing cultures with and without osteogenic supplements, via Alizarin red staining and the quantification of the gene expression levels of the osteogenic markers collagen type I, osteonectin and bone sialoprotein through real-time RT-PCR. The obtained hBMSCs presented a stable undifferentiated phenotype after prolonged cell culture, matrix mineralization capabilities and expression of osteoblast phenotype upon osteogenic induction. The three markers were up-regulated in cultures under osteogenic conditions and 2 fold differences in their expression levels were found to be significant for the onset of the differentiation process. The obtained hBMSCs may have applications on the in vitro evaluation of the osteoinductivity of different biomaterials, bioactive molecules or tissue engineering scaffolds

    Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.

    No full text
    Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaffolds presented average porosities between 70 and 80% with mean pore sizes ranging from 300 µm up to 5.0 mm. Non-reinforced scaffolds presented compressive strengths and elastic modulus values of 2.6 and 245 MPa, respectively, whereas reinforced scaffolds exhibited 4.2 and 443 MPa, respectively, an increase of ~62 and 80%. Portland cement scaffolds supported human osteoblast-like cell adhesion, spreading, and propagation (t = 1-28 days). Cell metabolism and alkaline phosphatase activity were found to be enhanced at longer culture intervals (t = 14 days). These results suggest the possibility of obtaining strong and biocompatible scaffolds for bone repair applications from inexpensive, yet technologically advanced materials such as Portland [email protected]

    Historiograffa Del Cine Colombiano 1974-2015 (Historiography of the Colombian Cinema 1974-2015)

    No full text
    corecore