3,014 research outputs found

    Mn-doped II-VI quantum dots: artificial molecular magnets

    Get PDF
    The notion of artifical atom relies on the capability to change the number of carriers one by one in semiconductor quantum dots, and the resulting changes in their electronic structure. Organic molecules with transition metal atoms that have a net magnetic moment and display hysteretic behaviour are known as single molecule magnets (SMM). The fabrication of CdTe quantum dots chemically doped with a controlled number of Mn atoms and with a number of carriers controlled either electrically or optically paves the way towards a new concept in nanomagnetism: the artificial single molecule magnet. Here we study the magnetic properties of a Mn-doped CdTe quantum dot for different charge states and show to what extent they behave like a single molecule magnet.Comment: Conference article presented at QD2006, Chamonix, May 200

    Ab initio calculations of structures and stabilities of (NaI)_nNa+ and (CsI)_nCs+ cluster ions

    Get PDF
    Ab initio calculations using the Perturbed Ion model, with correlation contributions included, are presented for nonstoichiometric (NaI)_nNa+ and (CsI)_nCs+ (n=1-14) cluster ions. The ground state and several low-lying isomers are identified and described. Rocksalt ground states are common and appear at cluster sizes lower than in the corresponding neutral systems. The most salient features of the measured mobilities seem to be explained by arguments related to the changes of the compactness of the clusters as a function of size. The stability of the cluster ions against evaporation of a single alkali halide molecule shows variations that explain the enhanced stabilities found experimentally for cluster sizes n=4, 6, 9, and 13. Finally, the ionization energies and the orbital eigenvalue spectrum of two (NaI)_13Na+ isomers are calculated and shown to be a fingerprint of the structure.Comment: 8 pages plus 13 postscript figures, LaTeX. Accepted for publication in Phys, Rev. B; minor changes including a more complete comparison to pair potential result

    Majorana Zero Modes in Graphene

    Get PDF
    A clear demonstration of topological superconductivity (TS) and Majorana zero modes remains one of the major pending goal in the field of topological materials. One common strategy to generate TS is through the coupling of an s-wave superconductor to a helical half-metallic system. Numerous proposals for the latter have been put forward in the literature, most of them based on semiconductors or topological insulators with strong spin-orbit coupling. Here we demonstrate an alternative approach for the creation of TS in graphene/superconductor junctions without the need of spin-orbit coupling. Our prediction stems from the helicity of graphene's zero Landau level edge states in the presence of interactions, and on the possibility, experimentally demonstrated, to tune their magnetic properties with in-plane magnetic fields. We show how canted antiferromagnetic ordering in the graphene bulk close to neutrality induces TS along the junction, and gives rise to isolated, topologically protected Majorana bound states at either end. We also discuss possible strategies to detect their presence in graphene Josephson junctions through Fraunhofer pattern anomalies and Andreev spectroscopy. The latter in particular exhibits strong unambiguous signatures of the presence of the Majorana states in the form of universal zero bias anomalies. Remarkable progress has recently been reported in the fabrication of the proposed type of junctions, which offers a promising outlook for Majorana physics in graphene systems.Comment: 14 pages, 8 figures. Included simulations of Andreev spectroscopy and mor

    JĂłvenes de GorriĂłn Molinero (Passer montanus) parasitando nidos de su propia especie

    Get PDF
    • …
    corecore