12 research outputs found

    Improved Horizontal Directional Hearing in Bone Conduction Device Users with Acquired Unilateral Conductive Hearing Loss

    Get PDF
    We examined horizontal directional hearing in patients with acquired severe unilateral conductive hearing loss (UCHL). All patients (n = 12) had been fitted with a bone conduction device (BCD) to restore bilateral hearing. The patients were tested in the unaided (monaural) and aided (binaural) hearing condition. Five listeners without hearing loss were tested as a control group while listening with a monaural plug and earmuff, or with both ears (binaural). We randomly varied stimulus presentation levels to assess whether listeners relied on the acoustic head-shadow effect (HSE) for horizontal (azimuth) localization. Moreover, to prevent sound localization on the basis of monaural spectral shape cues from head and pinna, subjects were exposed to narrow band (1/3 octave) noises. We demonstrate that the BCD significantly improved sound localization in 8/12 of the UCHL patients. Interestingly, under monaural hearing (BCD off), we observed fairly good unaided azimuth localization performance in 4/12 of the patients. Our multiple regression analysis shows that all patients relied on the ambiguous HSE for localization. In contrast, acutely plugged control listeners did not employ the HSE. Our data confirm and further extend results of recent studies on the use of sound localization cues in chronic and acute monaural listening

    Consensus Statement on Bone Conduction Devices and Active Middle Ear Implants in Conductive and Mixed Hearing Loss

    Get PDF
    Nowadays, several options are available to treat patients with conductive or mixed hearing loss. Whenever surgical intervention is not possible or contra-indicated, and amplification by a conventional hearing device (e.g., behind-the-ear device) is not feasible, then implantable hearing devices are an indispensable next option. Implantable bone-conduction devices and middle-ear implants have advantages but also limitations concerning complexity/invasiveness of the surgery, medical complications, and effectiveness. To counsel the patient, the clinician should have a good overview of the options with regard to safety and reliability as well as unequivocal technical performance data. The present consensus document is the outcome of an extensive iterative process including ENT specialists, audiologists, health-policy scientists, and representatives/technicians of the main companies in this field. This document should provide a first framework for procedures and technical characterization to enhance effective communication between these stakeholders, improving health care

    Auditory localisation of conventional and electric cars: Laboratory results and implications for cycling safety

    No full text
    When driven at low speeds, cars operating in electric mode have been found to be quieter than conventional cars. As a result, the auditory cues which pedestrians and cyclists use to assess the presence, proximity and location oncoming traffic may be reduced, posing a safety hazard. This laboratory study examined auditory localisation of conventional and electric cars including vehicle motion paths relevant for cycling activity. Participants (N = 65) in three age groups (16–18, 30–40 and 65–70 year old) indicated the location and movement direction (approaching versus receding) of cars driven at 15, 30 and 50 km/h in two ambient sound conditions (low and moderate). Results show that low speeds, higher ambient sound level and older age were associated with worse performance on the location and motion direction tasks. In addition, participants were less accurate at determining the location of electric and conventional car sounds emanating from directly behind the participant. Implications for cycling safety and proposals for adding extra artificial noise or warning sounds to quiet (electric) cars are discussed.Transport and PlanningTransport and Logistic

    Instant improvement in monaural spatial hearing abilities through cognitive feedback

    No full text
    Several studies report that sound localization performance of acute and chronic monauralized normal-hearing listeners can improve through training. Typically, training sessions are administered daily for several days or weeks. While this intensive training is effective, it may also be that monaural localization abilities improve instantly after providing explicit top-down information about the direction dependent change in timbre and level. The aim of the present study was to investigate whether cognitive feedback (i.e., top-down information) could instantly improve sound localization in naive acutely monauralized listeners. Forty-three normal-hearing listeners (experimental group), divided over five different centers, were tested. Two control groups, consisting of, respectively, nine and eleven normal-hearing listeners, were tested in one center. Broadband sounds (0.5-20 kHz) were presented from visible loudspeakers, positioned in azimuth (- 90 degrees to 90 degrees). Participants in the experimental group received explicit information about the noticeable difference in timbre and the poor localization in the monauralized listening condition, resulting in an instant improvement in sound localization abilities. With subsequent roving of stimulus level (20 dB), sound localization performance deteriorated immediately. The reported improvement is related to the context of the localization test. The results provide important implications for studies investigating sound localization in a clinical setting, especially during closed-set testing, and indicate the importance of top-down information
    corecore