6 research outputs found

    How to Assess Diabetic Kidney Disease Progression? From Albuminuria to GFR

    Get PDF
    Malaltia renal crònica; Diabetis mellitus; Malaltia renal diabèticaEnfermedad renal crónica; Diabetes mellitus; Enfermedad renal diabéticaChronic kidney disease; Diabetes mellitus; Diabetic kidney diseaseDiabetic kidney disease (DKD) is one of the most relevant complications of type 2 diabetes and dramatically increases the cardiovascular risk in these patients. Currently, DKD is severely infra-diagnosed, or its diagnosis is usually made at advanced stages of the disease. During the last decade, new drugs have demonstrated a beneficial effect in terms of cardiovascular and renal protection in type 2 diabetes, supporting the crucial role of an early DKD diagnosis to permit the use of new available therapeutic strategies. Moreover, cardiovascular and renal outcome trials, developed to study these new drugs, are based on diverse cardiovascular and renal simple and composite endpoints, which makes difficult their interpretation and the comparison between them. In this article, DKD diagnosis is reviewed, focusing on albuminuria and the recommendations for glomerular filtration rate measurement. Furthermore, cardiovascular and renal endpoints used in classical and recent cardiovascular outcome trials are assessed in a pragmatic way.The authors are current recipients of research grants from the Fondo de Investigación Sanitaria-Feder—Instituto de Salud Carlos III (PI17/00257) and REDinREN (RD16/0009/0030)

    Risk factors for non-diabetic renal disease in diabetic patients

    Get PDF
    Background. Diabetic patients with kidney disease have a high prevalence of non-diabetic renal disease (NDRD). Renal and patient survival regarding the diagnosis of diabetic nephropathy (DN) or NDRD have not been widely studied. The aim of our study is to evaluate the prevalence of NDRD in patients with diabetes and to determine the capacity of clinical and analytical data in the prediction of NDRD. In addition, we will study renal and patient prognosis according to the renal biopsy findings in patients with diabetes. Methods. Retrospective multicentre observational study of renal biopsies performed in patients with diabetes from 2002 to 2014. Results. In total, 832 patients were included: 621 men (74.6%), mean age of 61.7 6 12.8 years, creatinine was 2.8 6 2.2 mg/dL and proteinuria 2.7 (interquartile range: 1.2–5.4) g/24 h. About 39.5% (n ¼ 329) of patients had DN, 49.6% (n ¼ 413) NDRD and 10.8% (n ¼ 90) mixed forms. The most frequent NDRD was nephroangiosclerosis (NAS) (n ¼ 87, 9.3%). In the multivariate logistic regression analysis, older age [odds ratio (OR) ¼ 1.03, 95% CI: 1.02–1.05, P < 0.001], microhaematuria (OR ¼ 1.51, 95% CI: 1.03–2.21, P ¼ 0.033) and absence of diabetic retinopathy (DR) (OR ¼ 0.28, 95% CI: 0.19–0.42, P < 0.001) were independently associated with NDRD. Kaplan–Meier analysis showed that patients with DN or mixed forms presented worse renal prognosis than NDRD (P < 0.001) and higher mortality (P ¼ 0.029). In multivariate Cox analyses, older age (P < 0.001), higher serum creatinine (P < 0.001), higher proteinuria (P < 0.001), DR (P ¼ 0.007) and DN (P < 0.001) were independent risk factors for renal replacement therapy. In addition, older age (P < 0.001), peripheral vascular disease (P ¼ 0.002), higher creatinine (P ¼ 0.01) and DN (P ¼ 0.015) were independent risk factors for mortality. Conclusions. The most frequent cause of NDRD is NAS. Elderly patients with microhaematuria and the absence of DR are the ones at risk for NDRD. Patients with DN presented worse renal prognosis and higher mortality than those with NDRD. These results suggest that in some patients with diabetes, kidney biopsy may be useful for an accurate renal diagnosis and subsequently treatment and prognosis

    How to Assess Diabetic Kidney Disease Progression? From Albuminuria to GFR

    No full text
    Diabetic kidney disease (DKD) is one of the most relevant complications of type 2 diabetes and dramatically increases the cardiovascular risk in these patients. Currently, DKD is severely infra-diagnosed, or its diagnosis is usually made at advanced stages of the disease. During the last decade, new drugs have demonstrated a beneficial effect in terms of cardiovascular and renal protection in type 2 diabetes, supporting the crucial role of an early DKD diagnosis to permit the use of new available therapeutic strategies. Moreover, cardiovascular and renal outcome trials, developed to study these new drugs, are based on diverse cardiovascular and renal simple and composite endpoints, which makes difficult their interpretation and the comparison between them. In this article, DKD diagnosis is reviewed, focusing on albuminuria and the recommendations for glomerular filtration rate measurement. Furthermore, cardiovascular and renal endpoints used in classical and recent cardiovascular outcome trials are assessed in a pragmatic way

    Risk factors for non-diabetic renal disease in diabetic patients

    No full text
    Background. Diabetic patients with kidney disease have a high prevalence of non-diabetic renal disease (NDRD). Renal and patient survival regarding the diagnosis of diabetic nephropathy (DN) or NDRD have not been widely studied. The aim of our study is to evaluate the prevalence of NDRD in patients with diabetes and to determine the capacity of clinical and analytical data in the prediction of NDRD. In addition, we will study renal and patient prognosis according to the renal biopsy findings in patients with diabetes. Methods. Retrospective multicentre observational study of renal biopsies performed in patients with diabetes from 2002 to 2014. Results. In total, 832 patients were included: 621 men (74.6%), mean age of 61.7 6 12.8 years, creatinine was 2.8 6 2.2 mg/dL and proteinuria 2.7 (interquartile range: 1.2–5.4) g/24 h. About 39.5% (n ¼ 329) of patients had DN, 49.6% (n ¼ 413) NDRD and 10.8% (n ¼ 90) mixed forms. The most frequent NDRD was nephroangiosclerosis (NAS) (n ¼ 87, 9.3%). In the multivariate logistic regression analysis, older age [odds ratio (OR) ¼ 1.03, 95% CI: 1.02–1.05, P < 0.001], microhaematuria (OR ¼ 1.51, 95% CI: 1.03–2.21, P ¼ 0.033) and absence of diabetic retinopathy (DR) (OR ¼ 0.28, 95% CI: 0.19–0.42, P < 0.001) were independently associated with NDRD. Kaplan–Meier analysis showed that patients with DN or mixed forms presented worse renal prognosis than NDRD (P < 0.001) and higher mortality (P ¼ 0.029). In multivariate Cox analyses, older age (P < 0.001), higher serum creatinine (P < 0.001), higher proteinuria (P < 0.001), DR (P ¼ 0.007) and DN (P < 0.001) were independent risk factors for renal replacement therapy. In addition, older age (P < 0.001), peripheral vascular disease (P ¼ 0.002), higher creatinine (P ¼ 0.01) and DN (P ¼ 0.015) were independent risk factors for mortality. Conclusions. The most frequent cause of NDRD is NAS. Elderly patients with microhaematuria and the absence of DR are the ones at risk for NDRD. Patients with DN presented worse renal prognosis and higher mortality than those with NDRD. These results suggest that in some patients with diabetes, kidney biopsy may be useful for an accurate renal diagnosis and subsequently treatment and prognosis

    Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial

    No full text
    Background: Sparsentan is a novel, non-immunosuppressive, single-molecule, dual endothelin and angiotensin receptor antagonist being examined in an ongoing phase 3 trial in adults with IgA nephropathy. We report the prespecified interim analysis of the primary proteinuria efficacy endpoint, and safety. Methods: PROTECT is an international, randomised, double-blind, active-controlled study, being conducted in 134 clinical practice sites in 18 countries. The study examines sparsentan versus irbesartan in adults (aged ≥18 years) with biopsy-proven IgA nephropathy and proteinuria of 1·0 g/day or higher despite maximised renin-angiotensin system inhibitor treatment for at least 12 weeks. Participants were randomly assigned in a 1:1 ratio to receive sparsentan 400 mg once daily or irbesartan 300 mg once daily, stratified by estimated glomerular filtration rate at screening (30 to 1·75 g/day). The primary efficacy endpoint was change from baseline to week 36 in urine protein-creatinine ratio based on a 24-h urine sample, assessed using mixed model repeated measures. Treatment-emergent adverse events (TEAEs) were safety endpoints. All endpoints were examined in all participants who received at least one dose of randomised treatment. The study is ongoing and is registered with ClinicalTrials.gov, NCT03762850. Findings: Between Dec 20, 2018, and May 26, 2021, 404 participants were randomly assigned to sparsentan (n=202) or irbesartan (n=202) and received treatment. At week 36, the geometric least squares mean percent change from baseline in urine protein-creatinine ratio was statistically significantly greater in the sparsentan group (-49·8%) than the irbesartan group (-15·1%), resulting in a between-group relative reduction of 41% (least squares mean ratio=0·59; 95% CI 0·51-0·69; p<0·0001). TEAEs with sparsentan were similar to irbesartan. There were no cases of severe oedema, heart failure, hepatotoxicity, or oedema-related discontinuations. Bodyweight changes from baseline were not different between the sparsentan and irbesartan groups. Interpretation: Once-daily treatment with sparsentan produced meaningful reduction in proteinuria compared with irbesartan in adults with IgA nephropathy. Safety of sparsentan was similar to irbesartan. Future analyses after completion of the 2-year double-blind period will show whether these beneficial effects translate into a long-term nephroprotective potential of sparsentan. Funding: Travere Therapeutics
    corecore