7,367 research outputs found
Spontaneous soliton formation and modulational instability in Bose-Einstein condensates
The dynamics of an elongated attractive Bose-Einstein condensate in an
axisymmetric harmonic trap is studied. It is shown that density fringes caused
by self-interference of the condensate order parameter seed modulational
instability. The latter has novel features in contradistinction to the usual
homogeneous case known from nonlinear fiber optics. Several open questions in
the interpretation of the recent creation of the first matter-wave bright
soliton train [Strecker {\it et al.} Nature {\bf 417} 150 (2002)] are
addressed. It is shown that primary transverse collapse, followed by secondary
collapse induced by soliton--soliton interactions, produce bursts of hot atoms
at different time scales.Comment: 4 pages, 3 figures. Phys. Rev. Lett. in pres
Quantum Dissension: Generalizing Quantum Discord for Three-Qubit States
We introduce the notion of quantum dissension for a three-qubit system as a
measure of quantum correlations. We use three equivalent expressions of
three-variable mutual information. Their differences can be zero classically
but not so in quantum domain. It generalizes the notion of quantum discord to a
multipartite system. There can be multiple definitions of the dissension
depending on the nature of projective measurements done on the subsystems. As
an illustration, we explore the consequences of these multiple definitions and
compare them for three-qubit pure and mixed GHZ and W states. We find that
unlike discord, dissension can be negative. This is because measurement on a
subsystem may enhance the correlations in the rest of the system. This approach
can pave a way to generalize the notion of quantum correlations in the
multiparticle setting.Comment: 9 pages 6 figures typo fixed and some arguments adde
A pulsed atomic soliton laser
It is shown that simultaneously changing the scattering length of an
elongated, harmonically trapped Bose-Einstein condensate from positive to
negative and inverting the axial portion of the trap, so that it becomes
expulsive, results in a train of self-coherent solitonic pulses. Each pulse is
itself a non-dispersive attractive Bose-Einstein condensate that rapidly
self-cools. The axial trap functions as a waveguide. The solitons can be made
robustly stable with the right choice of trap geometry, number of atoms, and
interaction strength. Theoretical and numerical evidence suggests that such a
pulsed atomic soliton laser can be made in present experiments.Comment: 11 pages, 4 figure
Controlling pulse propagation in optical fibers through nonlinearity and dispersion management
In case of the nonlinear Schr\"odinger equation with designed group velocity
dispersion, variable nonlinearity and gain/loss; we analytically demonstrate
the phenomenon of chirp reversal crucial for pulse reproduction. Two different
scenarios are exhibited, where the pulses experience identical dispersion
profiles, but show entirely different propagation behavior. Exact expressions
for dynamical quasi-solitons and soliton bound-states relevant for fiber
communication are also exhibited.Comment: 4 pages, 5 eps figure
Dynamics of fluctuations in an optical analog of the Laval nozzle
Using the analogy between the description of coherent light propagation in a
medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and
that of a dissipationless liquid we propose an optical analogue of the Laval
nozzle. The optical Laval nozzle will allow one to form a transonic flow in
which one can observe and study a very unusual dynamics of classical and
quantum fluctuations including analogue of the Hawking radiation of real black
holes. Theoretical analysis of this dynamics is supported by numerical
calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure
Discovering the Elite Hypervolume by Leveraging Interspecies Correlation
Evolution has produced an astonishing diversity of species, each filling a
different niche. Algorithms like MAP-Elites mimic this divergent evolutionary
process to find a set of behaviorally diverse but high-performing solutions,
called the elites. Our key insight is that species in nature often share a
surprisingly large part of their genome, in spite of occupying very different
niches; similarly, the elites are likely to be concentrated in a specific
"elite hypervolume" whose shape is defined by their common features. In this
paper, we first introduce the elite hypervolume concept and propose two metrics
to characterize it: the genotypic spread and the genotypic similarity. We then
introduce a new variation operator, called "directional variation", that
exploits interspecies (or inter-elites) correlations to accelerate the
MAP-Elites algorithm. We demonstrate the effectiveness of this operator in
three problems (a toy function, a redundant robotic arm, and a hexapod robot).Comment: In GECCO 201
Solitons in cavity-QED arrays containing interacting qubits
We reveal the existence of polariton soliton solutions in the array of weakly
coupled optical cavities, each containing an ensemble of interacting qubits. An
effective complex Ginzburg-Landau equation is derived in the continuum limit
taking into account the effects of cavity field dissipation and qubit
dephasing. We have shown that an enhancement of the induced nonlinearity can be
achieved by two order of the magnitude with a negative interaction strength
which implies a large negative qubit-field detuning as well. Bright solitons
are found to be supported under perturbations only in the upper (optical)
branch of polaritons, for which the corresponding group velocity is controlled
by tuning the interacting strength. With the help of perturbation theory for
solitons, we also demonstrate that the group velocity of these polariton
solitons is suppressed by the diffusion process
Noise resistance of adiabatic quantum computation using random matrix theory
Besides the traditional circuit-based model of quantum computation, several
quantum algorithms based on a continuous-time Hamiltonian evolution have
recently been introduced, including for instance continuous-time quantum walk
algorithms as well as adiabatic quantum algorithms. Unfortunately, very little
is known today on the behavior of these Hamiltonian algorithms in the presence
of noise. Here, we perform a fully analytical study of the resistance to noise
of these algorithms using perturbation theory combined with a theoretical noise
model based on random matrices drawn from the Gaussian Orthogonal Ensemble,
whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure
Predictors of subgroups based on maximum drinks per occasion over six years for 833 adolescents and young adults in COGA.
ObjectiveA person's pattern of heavier drinking often changes over time, especially during the early drinking years, and reflects complex relationships among a wide range of characteristics. Optimal understanding of the predictors of drinking during times of change might come from studies of trajectories of alcohol intake rather than cross-sectional evaluations.MethodThe patterns of maximum drinks per occasion were evaluated every 2 years between the average ages of 18 and 24 years for 833 subjects from the Collaborative Study on the Genetics of Alcoholism. Latent class growth analysis identified latent classes for the trajectories of maximum drinks, and then logistic regression analyses highlighted variables that best predicted class membership.ResultsFour latent classes were found, including Class 1 (69%), with about 5 maximum drinks per occasion across time; Class 2 (15%), with about 9 drinks at baseline that increased to 18 across time; Class 3 (10%), who began with a maximum of 18 drinks per occasion but decreased to 9 over time; and Class 4 (6%), with a maximum of about 22 drinks across time. The most consistent predictors of higher drinking classes were female sex, a low baseline level of response to alcohol, externalizing characteristics, prior alcohol and tobacco use, and heavier drinking peers.ConclusionsFour trajectory classes were observed and were best predicted by a combination of items that reflected demography, substance use, level of response and externalizing phenotypes, and baseline environment and attitudes
Observation of slow light in the noise spectrum of a vertical external cavity surface emitting laser
The role of coherent population oscillations is evidenced in the noise
spectrum of an ultra-low noise lasers. This effect is isolated in the intensity
noise spectrum of an optimized single-frequency vertical external cavity
surface emitting laser. The coherent population oscillations induced by the
lasing mode manifest themselves through their associated dispersion that leads
to slow light effects probed by the spontaneous emission present in the
non-lasing side modes.Comment: accepted for publication in Phys. Rev. Let
- …