177 research outputs found

    Electron-lattice kinetics of metals heated by ultrashort laser pulses

    Get PDF
    We propose a kinetic model of transient nonequilibrium phenomena in metals exposed to ultrashort laser pulses when heated electrons affect the lattice through direct electron-phonon interaction. This model describes the destruction of a metal under intense laser pumping. We derive the system of equations for the metal, which consists of hot electrons and a cold lattice. Hot electrons are described with the help of the Boltzmann equation and equation of thermoconductivity. We use the equations of motion for lattice displacements with the electron force included. The lattice deformation is estimated immediately after the laser pulse up to the time of electron temperature relaxation. An estimate shows that the ablation regime can be achieved.Comment: 7 pages; Revtex. to appear in JETP 88, #1 (1999

    Observation of electro-activated localized structures in broad area VCSELs

    Get PDF
    We demonstrate experimentally the electro-activation of a localized optical structure in a coherently driven broad-area vertical-cavity surface-emitting laser (VCSEL) operated below threshold. Control is achieved by electro-optically steering a writing beam through a pre-programmable switch based on a photorefractive funnel waveguide.Comment: 5 Figure

    Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics

    Get PDF
    One of the most controversial phenomena in nonlinear dynamics is the reappearance of initial conditions. Celebrated as the Fermi-Pasta-Ulam-Tsingou problem, the attempt to understand how these recurrences form during the complex evolution that leads to equilibrium has deeply influenced the entire development of nonlinear science. The enigma is rendered even more intriguing by the fact that integrable models predict recurrence as exact solutions, but the difficulties involved in upholding integrability for a sufficiently long dynamic has not allowed a quantitative experimental validation. In natural processes, coupling with the environment rapidly leads to thermalization, and finding nonlinear multimodal systems presenting multiple returns is a long-standing open challenge. Here, we report the observation of more than three Fermi-Pasta-Ulam-Tsingou recurrences for nonlinear optical spatial waves and demonstrate the control of the recurrent behavior through the phase and amplitude of the initial field. The recurrence period and phase shift are found to be in remarkable agreement with the exact recurrent solution of the nonlinear Schrödinger equation, while the recurrent behavior disappears as integrability is lost. These results identify the origin of the recurrence in the integrability of the underlying dynamics and allow us to achieve one of the basic aspirations of nonlinear dynamics: the reconstruction, after several return cycles, of the exact initial condition of the system, ultimately proving that the complex evolution can be accurately predicted in experimental conditions

    Photorefractive light needles in glassy nanodisordered KNTN

    Get PDF
    We study the formation of 2D self-trapped beams in nanodisordered potassium-sodium-tantalate-niobate (KNTN) cooled below the dynamic glass transition. Supercooling is shown to accelerate the photorefractive response and enhance steady-state anisotropy. Effects in the excited state are attributed to the anomalous slim-loop polarization curve typical of relaxors dominated by non-interacting polar-nano-regions

    MHz Unidirectional Rotation of Molecular Rotary Motors

    Get PDF
    A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Spallative ablation of dielectrics by X-ray laser

    Full text link
    Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration τL\tau_L is shorter than acoustic relaxation time tst_s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse

    Prevalence of overweight in children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorders: a chart review

    Get PDF
    BACKGROUND: The condition of obesity has become a significant public health problem in the United States. In children and adolescents, the prevalence of overweight has tripled in the last 20 years, with approximately 16.0% of children ages 6–19, and 10.3% of 2–5 year olds being considered overweight. Considerable research is underway to understand obesity in the general pediatric population, however little research is available on the prevalence of obesity in children with developmental disorders. The purpose of our study was to determine the prevalence of overweight among a clinical population of children diagnosed with attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). METHODS: Retrospective chart review of 140 charts of children ages 3–18 years seen between 1992 and 2003 at a tertiary care clinic that specializes in the evaluation and treatment of children with developmental, behavioral, and cognitive disorders. Diagnostic, medical, and demographic information was extracted from the charts. Primary diagnoses of either ADHD or ASD were recorded, as was information on race/ethnicity, age, gender, height, and weight. Information was also collected on medications that the child was taking. Body mass index (BMI) was calculated from measures of height and weight recorded in the child's chart. The Center for Disease Control's BMI growth reference was used to determine an age- and gender-specific BMI z-score for the children. RESULTS: The prevalence of at-risk-for-overweight (BMI >85th%ile) and overweight (BMI > 95th%ile) was 29% and 17.3% respectively in children with ADHD. Although the prevalence appeared highest in the 2–5 year old group (42.9%ile), differences among age groups were not statistically significant. Prevalence did not differ between boys and girls or across age groups (all p > 0.05). For children with ASD, the overall prevalence of at-risk-for-overweight was 35.7% and prevalence of overweight was 19%. CONCLUSION: When compared to an age-matched reference population (NHANES 1999–2002), our estimates indicate that children with ADHD and with ASD have a prevalence of overweight that is similar to children in the general population
    corecore