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We study the formation of 2D self-trapped beams in nanodisordered potassium-sodium-tantalate-niobate (KNTN)
cooled below the dynamic glass transition. Supercooling is shown to accelerate the photorefractive response and
enhance steady-state anisotropy. Effects in the excited state are attributed to the anomalous slim-loop polarization
curve typical of relaxors dominated by non-interacting polar-nano-regions. © 2014 Optical Society of America
OCIS codes: (190.4720) Optical nonlinearities of condensed matter; (190.5330) Photorefractive optics; (190.6135)

Spatial solitons.
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Nonlinear optics is generally performed in systems that
start from equilibrium, where long-range order and
coherence form the basis for strong response. Composi-
tional disorder in a perovskite ferroelectric can turn it
into a relaxor, a crystal where long-range order is frus-
trated but short-range order, in the form of polar-nano-
regions (PNRs), is anomalously enhanced [1,2]. Relaxors
appear to manifest a non-ergodic phase with dipolar-glass
properties, with a dielectric response that depends on
previous history [3]. In many respects, the perfect lattice
can be considered to host an embedded glass-forming-
liquid, i.e., with relaxational properties that are described
by the Adam–Gibbs model [4]. Apart from fundamental
challenges [5,6], relaxors offer the promise of applica-
tions in a variety of fields, such as tunable capacitors
and memory chips.
In terms of optics, one basic question is what happens

to linear and nonlinear optical propagation inside a
relaxor. Recent experiments in relaxors are focusing
on transparent samples with high optical quality [7]. This
presents the unique possibility of tapping into the
complex-solid behavior to affect light control [8,9], design
novel optical devices [10], and, in general, uncover new
wave phenomena, such as the recently demonstrated
diffraction cancellation associated to scale-free optics
in supercooled potassium-lithium-tantalate-niobate
(KLTN) [11–14].
Photorefractive ferroelectrics at equilibrium support

2D optical spatial solitons, beams for which diffraction
is compensated by self-focusing [15,16]. These waves not
only represent a rare example of a higher-than-one-
dimensional solitary wave [17], but, amounting to fiber-
like guiding channels that are self-written into the bulk of
the crystal, support miniaturized optical switching and
routing circuits [18,19]. Potential applications range from
massive switching matrices in communication networks
[20] to complex polarization-sensitive circuitry for linear
quantum computing simulation [21,22].
In this Letter, we experimentally investigate the forma-

tion of 2D solitons in compositionally disordered

potassium-sodium-tantalate-niobate (KNTN), a crystal in
which we have recently observed soliton aging [23]. In
our experiments, we show how changing the cooling
rate, with which we reach the final operation tempera-
ture, we are able to fundamentally change the soliton-
supporting nonlinearity, selectively shifting from a slow
isotropic response to a fast anisotropic one. We are able
to attribute this shift to the selective activation of the
slim-loop polarization curve characteristic of quenched
disordered dipole systems. Apart from the basic fact that
we are thus able to make, on command, a spatial soliton
be anisotropic and hence, for example, change its polari-
zation sensitivity, our scheme demonstrates a means to
tune optical nonlinearity at levels that were previously
believed to require the design of new crystals. More
fundamentally, our findings demonstrate how glassy re-
sponse can change not only the crystal-dependent param-
eters mediating the light-matter interaction, but also the
nature of the nonlinearity.

We have grown our sample of K1−xNaxTa1−yNbyO3
through the top-seeded solution method and extracted
a zero-cut 1.17�x� × 1.90�y� × 2.43�z� mm specimen with
K0.89Na0.11Ta0.63Nb0.37. The KNTN is also Cu-doped
(0.001 atoms per mole) and manifests strong photorefrac-
tive response for visible wavelengths. In order to identify
the temperature range of existence of permanent dy-
namic PNRs in the relaxor, we perform dielectric spec-
troscopy measurements using a standard LCR meter
scheme for different frequencies and a thermal chamber.
Measurements are in a quasi-static regime, i.e., the cool-
ing/heating rate for these spectroscopy experiments is
α≃�1 mK∕s. The results of the dielectric constant mea-
surements are reported in Fig. 1. The temperature
T� � 305 K, below which the mean-field Curie–Weiss
law ϵr � C∕�T − TC� (dashed line) is violated, marks
the PNRs onset as confirmed by dielectric dispersion
in the real part of the permittivity below this value [inset
of Fig. 1], i.e., where the relaxor behavior affects the
dielectric response [24,25] and, hence, photorefraction
through the electro-optic effect. At Tmax � 285 K, in turn,

March 15, 2014 / Vol. 39, No. 6 / OPTICS LETTERS 1657

0146-9592/14/061657-04$15.00/0 © 2014 Optical Society of America

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54497268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OL.39.001657


large scale micrometer-sized ferroelectric clusters form
that inhibit optical propagation, whereas TC � 275 K.
Optically accessible glassy physics as a consequence
of the cooling protocols (described below) is detected
in the region Tmax < T < T�.
In the optical scheme, the crystal is in thermal contact

with a Peltier junction, which allows cooling protocols at
various constant cooling rates, from aminimum of αmin �
0.0025 K∕s to the maximum value of αmax � 0.07 K∕s. In
each experiment, we heat the sample at the “warm” Ti �
310 K for 30 min and then enact a cooling at a fixed rate
α to the final operation temperature Te � 301 K. An x

polarized (with reference to the crystal axes, see Fig. 1)
2 mW Gaussian beam from a doubled Nd:YAG laser
(λ � 532 nm) is expanded to approximately 10 mm diam-
eter and divided by a 50/50 beam splitter. The transmitted
beam is attenuated through a tunable neutral-density
filter and focused down by an f � 150 mm spherical lens.
The polarization of the reflected beam is rotated, using a
λ∕2 waveplate, from the x to the vertical y plane. A
second beam splitter recombines the two beams along
the z axis. The converging beam is focused onto the input
facet of the crystal and diffracts as it propagates to the
output facet. A lens after the crystal projects selectively
the input and output facet onto a CCD. On the two lateral
x facets electrodes are applied that deliver a bias voltage
V , giving rise to a bias electric field in the sample of
E � V∕Lx (with Lx � 1.17 mm).
In Fig. 2, we report results of 2D beam self-trapping,

both for slow cooling to Te, with α � αmin, and rapid cool-
ing, with α � αmax. As shown in Fig. 2(a), the input round
Δxin � Δyin � 8 μm FWHM beam diffracts at the output
facet to aΔx � 27 μmΔy � 21 μm pattern. The distorted
speckle-like distribution in the V � 0 output is caused by
inhomogeneities in the linear response (as established by
simply translating the sample laterally, in which case also
the output ellipticity can be readily inverted). For a ratio
between the peak input beam intensity Ip and average

intensity of the copropagating y polarized (background)
beam Ib of Ip∕Ib ≡ u2

0 � 29 and an applied voltage
V0 � 475 V, the beam forms a stable nonspreading beam
of the same input FWHM, a phenomenon that greatly re-
traces what is known for 2D screening solitons [26].
Changing launch u0 and applied voltage V0, imposing
that a round Δx � Δy � Δxin output intensity distribu-
tion form with the same input FWHM leads to the iden-
tification of a 2D soliton “existence curve” in the beam
parameter space [27], as reported in Fig. 2(b). We intro-
duce the normalized soliton width Δξ [28,29]. Assuming a
round soliton so that Δx � Δy, ξ � x∕d, d � 1∕

�����������
−2kb

p
,

b � �k∕n0�Δn0, n � n0 � Δn�I�, Δn�I� � −Δn0�1�
I∕Ib�−2, and Δn0 � �1∕2�n2

0geffϵ
2
0�ϵr − 1�2E2

0. Here
E0 � V0∕Lx, k � 2πn0∕λ is the optical wave number,
n0 � 2.31 is the unperturbed index of refraction, I is
the spatially resolved optical intensity distribution, geff �
0.14 C−2 m4 is the effective quadratic electro-optic coef-
ficient, and ϵr�Te� � 4800 is the quasi-static dielectric
constant. Results reported in Fig. 2(b) agree with 2D
screening soliton phenomena in centrosymmetric sys-
tems [29,30]. In Fig. 2(c), we report results for the rapid
cooling case of α � αmax. As shown in Fig. 2(c), in the
same conditions of Fig. 2(a), the beam self traps at a
steady state to a beam with an elliptical profile, with
Δx � Δxin � 8 μm and Δy � 12 μm. Repeating the ex-
periment for all accessible values of V0 < 1 KV indicates
that Δx attains the same value as the input, forming a sol-
iton, only for the V0 ≃ 480 V (compatible with the slow
cooling experiment), and in these conditions the beam is
elliptical, as illustrated in Fig. 2(d). Repeating the experi-
ment for different values of u0 does not change this
picture in the investigated range 2 < u0 < 12. We observe

Fig. 1. Low-frequency (1 KHz) measurement (circles) of the
real part of the dielectric constant of the KNTN sample mani-
festing marked thermal hysteresis (arrows indicate cooling/
heating curves) below T� and a breaking of Curie–Weiss
mean-field behavior (dashed line) in the region Tmax < T < T�

(ϵmax
r � 9.5 · 103, decreasing temperature loop). In the insets,

the detected dispersion in ϵr near Tmax and a photograph of
the specific KNTN sample.

Fig. 2. Round versus elliptical 2D needles in KNTN. Slow cool-
ing: (a) input and output intensity distributions at steady-state
without and with applied bias voltage. (b) Existence conditions
for Δx � Δy≃ Δxin, in the soliton normalized amplitude-width
parameter space (see text). Rapid cooling: (c) the input round
Δxin � Δyin � 8 μm beam diffracts to and average FWHM of
Δy � 25 μm for V � 0 and converges to an elliptical beam pro-
file for V � V0, where only the x direction traps to the initial
launch size. No values of V lead to a round soliton of the same
size as the input. (d) Comparison of slow and fast cooling out-
put intensity distributions at steady-state (top) and representa-
tion of inferred beam evolution (bottom).
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a convergence of the beam to a self-trapped state in the x
direction, but not in the y, as illustrated in the bottom
inset of Fig. 2(d).
We report in Fig. 3 the comparison between the slow

and fast cooling experiments as these develop in time
toward a steady state. Interestingly, the time scale of
the two processes, measured taking the 90% and 10%
values of Δx − Δxin, decreases from ταmin

≃ 48 min to
ταmax

≃ 11 min, a change that may be associated with a
different conductivity in the two cases.
The annealing/quenching impacts on a debated and im-

portant aspect of photorefractive solitons, i.e., the role of
anisotropy [31–33]. The zero-field-readout of the under-
lying pattern is reported in Figs. 4(a) and 4(b) [32,33].
Propagation properties are detected with V � 0 after
the space charge has formed, before it can redistribute
[34]. The patterns are what you observe after the soliton
of Fig. 2 has formed but with no bias applied. Consis-
tently with literature in conventional ferroelectrics, in
the slow-cooling case that leads to round beams, the
anisotropy is strongly influenced by nonlocality, as
testified by the breaking of symmetry in the x direction

of Fig. 4(a). Equally consistently, in the rapidly cooled
case, where elliptical beams are observed, the symmetry
is restored, meaning that the role of nonlocal compo-
nents is attenuated [Fig. 4(b)]. Beam anisotropy is
strongly influenced by the specific P versus E relation-
ship, where E and P are the point-dependent electric field
and macroscopic polarization, and this relation is known
to change the cooling rate of the crystal [10,11]. The pho-
torefractive model leads to the expression in [26]:

E · �Ib � I�∕�1�∇ · D∕qNa� � g; (1)

where D � ϵ0E� P, g is a constant proportional to E0, q
is the elementary charge of the photoexcited carriers, Na

is the density of acceptor sites, charge diffusion is ne-
glected, and the condition Na ≪ Nd holds, where Nd is
the concentration of donor impurities. The larger the
value of ∇ · D∕qNa, the more attenuated the anisotropy
in the beam, the stronger the achievable soliton circular-
symmetry [32]. Now ∇ · D � ∇ · �ϵ0E� P�≃∇ · P, a
term that is fundamentally governed by the P versus E
relation (in the simplified one-transverse-dimensional
case, dP∕dx � �dP∕dE��dE∕dx�). Even though ϵr
(1 KHz 100 mV signal) for the slow and rapid cooling
cases leads to no appreciable difference at the operation
temperature Te [Fig. 4(c)], a more detailed picture
emerges from cross-polarizer experiments [Fig. 4(d)].
The sample is placed between two polarizers with mutu-
ally orthogonal axes, at 45 deg with respect to the crystal
principal axes (the crystal is zero-cut). The transmission
of light is, hence, possible because of the electro-optic
response to the x directed bias field according to the
law Iout∕I in � sin2�Δϕ∕2�, Δϕ � Δn�2π∕λ�Lz. Measuring
transmission leads to the value of Δϕ�E� and to the P ver-
sus E relation through Δn � −�1∕2�n2

0geffP
2. As reported

in Fig. 4(d), where the residual birefringence at zero
field has been compensated, for the typical values of
space-charge field involved in our experiments
(E ∼ 4 · 105 V∕m), the response decreases and saturates
in the supercooled case (full lines) compared to the slow-
cooling case (dashed line), i.e., the fringe pattern in the
quenched case lags ever more behind the annealed fringe
pattern. This sublinear P versus E relation is typical of
relaxors and their “slim loop” hysteresis curve above
Tmax [1,2]. This can filter out the spatial dependence
of P caused by the spatial dependence of the soliton-
supporting light induced E, and reduce the ∇ · D∕qNa

term. As reported in Fig. 4(d), we also detect a decrease
in fringe visibility (Imax − Imin∕�Imax � Imin�) for decreas-
ing cooling rates indicating, in agreement with previous
literature [8,9], that underlying PNRs grow in size, reach-
ing the wavelength scale unless rapid cooling is used.
Operating closer to the Tmax or applying alternating bias
fields during super-cooling can also fundamentally
change the P versus E relation causing, for example, a
giant electro-optic effect [9]. Evidently, a full theoretical
model of photorefraction and solitons in quenched relax-
ors requires further development.

In summary, we have detected and analyzed 2D spatial
soliton beams in relaxor KNTN. Our findings side with
the ever-growing evidence of how disorder, even in ap-
parently negligible quantities, can dramatical change
the macroscopic response of a crystal, as is known to

Fig. 3. Rapid cooling accelerates the photorefractive effect.
(a) Time evolution of output beam FWHM normalized to input
in the x and y directions in the slow-cooling case. (b) A more
than four-fold speeding of self-trapping in the rapid-cooled
sample.

Fig. 4. Zero-field readout (V � 0) in the (a) slow and (b) rapid
cooling cases. Defining x̄≡

R
I�x; y�xdxdy∕ R I�x; y�dxdy the

center of the pattern, δxc the shift of x̄ for V � V0 (crossing
of dashed lines), and for V � 0, δxc � 6 μm and 0.5 μm in
the two conditions, respectively. (c) Comparison of ϵr data.
(d) Cross-polarizer transmission Iout∕I in versus applied E.
The slight shift in the pattern for increasing bias fields (red line)
and for decreasing ones (black curve) quantifies a small hyste-
resis, whereas the decrease in fringe visibility is caused by
depolarization [8].
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occur in colossal magnetoresistance, piezoresistance,
and electroresistance in perovskites [35].
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