7 research outputs found

    Comparative Analysis of the Saccharomyces cerevisiae and Caenorhabditis elegans Protein Interaction Network

    Get PDF
    Protein interaction networks aim to summarize the complex interplay of proteins in an organism. Early studies suggested that the position of a protein in the network determines its evolutionary rate but there has been considerable disagreement as to what extent other factors, such as protein abundance, modify this reported dependence. We compare the genomes of Saccharomyces cerevisiae and Caenorhabditis elegans with those of closely related species to elucidate the recent evolutionary history of their respective protein interaction networks. Interaction and expression data are studied in the light of a detailed phylogenetic analysis. The underlying network structure is incorporated explicitly into the statistical analysis. The increased phylogenetic resolution, paired with high-quality interaction data, allows us to resolve the way in which protein interaction network structure and abundance of proteins affect the evolutionary rate. We find that expression levels are better predictors of the evolutionary rate than a protein's connectivity. Detailed analysis of the two organisms also shows that the evolutionary rates of interacting proteins are not sufficiently similar to be mutually predictive. It appears that meaningful inferences about the evolution of protein interaction networks require comparative analysis of reasonably closely related species. The signature of protein evolution is shaped by a protein's abundance in the organism and its function and the biological process it is involved in. Its position in the interaction networks and its connectivity may modulate this but they appear to have only minor influence on a protein's evolutionary rate.Comment: Accepted for publication in BMC Evolutionary Biolog

    The effects of incomplete protein interaction data on structural and evolutionary inferences

    Get PDF
    BACKGROUND: Present protein interaction network data sets include only interactions among subsets of the proteins in an organism. Previously this has been ignored, but in principle any global network analysis that only looks at partial data may be biased. Here we demonstrate the need to consider network sampling properties explicitly and from the outset in any analysis. RESULTS: Here we study how properties of the yeast protein interaction network are affected by random and non-random sampling schemes using a range of different network statistics. Effects are shown to be independent of the inherent noise in protein interaction data. The effects of the incomplete nature of network data become very noticeable, especially for so-called network motifs. We also consider the effect of incomplete network data on functional and evolutionary inferences. CONCLUSION: Crucially, when only small, partial network data sets are considered, bias is virtually inevitable. Given the scope of effects considered here, previous analyses may have to be carefully reassessed: ignoring the fact that present network data are incomplete will severely affect our ability to understand biological systems

    Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    Get PDF
    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes.publishe

    Evolution of pathogenicity and sexual reproduction in eight Candida genomes

    No full text
    Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/α2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes. © 2009 Macmillan Publishers Limited. All rights reserved
    corecore