78 research outputs found

    Preliminary results of an aging test of RPC chambers for the LHCb Muon System

    Get PDF
    The preliminary results of an aging test performed at the CERN Gamma Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon System are presented. The results are based on an accumulated charge density of 0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest background rate. We observe a rise in the dark current and noise measured with source off. The current drawn with source on steadily decreased, possibly indicating an increase of resistivity of the chamber plates. The performance of the chamber, studied with a muon beam under several photon flux values, is found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga

    First results from an aging test of a prototype RPC for the LHCb Muon System

    Get PDF
    Recent results of an aging test performed at the CERN Gamma Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon System are presented. The results are based on an accumulated charge of about 0.45 C/cm2^2, corresponding to about 4 years of LHCb running at the highest background rate. The performance of the chamber has been studied under several photon flux values exploiting a muon beam. A degradation of the rate capability above 1 kHz/cm2^2 is observed, which can be correlated to a sizeable increase of resistivity of the chamber plates. An increase of the chamber dark current is also observed. The chamber performance is found to fulfill the LHCb operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200

    New results from an extensive aging test on bakelite Resistive Plate Chambers

    Get PDF
    We present recent results of an extensive aging test, performed at the CERN Gamma Irradiation Facility on two single--gap RPC prototypes, developed for the LHCb Muon System. With a method based on a model describing the behaviour of an RPC under high particle flux conditions, we have periodically measured the electrode resistance R of the two RPC prototypes over three years: we observe a large spontaneous increase of R with time, from the initial value of about 2 MOhm to more than 250 MOhm. A corresponding degradation of the RPC rate capabilities, from more than 3 kHz/cm2 to less than 0.15 kHz/cm2 is also found.Comment: 6 pages, 7 figures, presented at Siena 2002, 8th Topical Seminar on Innovative Particle and Radiation Detectors 21-24 October 2002, Siena, Ital

    Evaluation of a Pomegranate Peel Extract as an Alternative Means to Control Olive Anthracnose

    Get PDF
    Olive anthracnose is caused by different species of Colletotrichum spp. and may be regarded as the most damaging disease of olive fruit worldwide, greatly affecting quality and quantity of the productions. A pomegranate peel extract (PGE) proved very effective in controlling the disease. The extract had a strong in vitro fungicidal activity against Colletotrichum acutatum sensu stricto, was very effective in both preventive and curative trials with artificially inoculated fruit, and induced resistance in treated olive tissues. In field trials, PGE was significantly more effective than copper, which is traditionally used to control the disease. The highest level of protection was achieved by applying the extract in the early ascending phase of the disease outbreaks because natural rots were completely inhibited with PGE at 12 g/liter and were reduced by 98.6 and by 93.0% on plants treated with PGE at 6 and 3 g/liter, respectively. Two treatments carried out 30 and 15 days before the expected epidemic outbreak reduced the incidence of the disease by 77.6, 57.0, and 51.8%, depending on the PGE concentration. The analysis of epiphytic populations showed a strong antimicrobial activity of PGE, which sharply reduced both fungal and bacterial populations. Because PGE was obtained from a natural matrix using safe chemicals and did not have any apparent phytotoxic effect on treated olive fruit, it may be regarded as a safe and effective natural antifungal preparation to control olive anthracnose and improve olive productions

    Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterize epithermal/thermal neutron beams for NCT

    Get PDF
    The reliability of Fricke gel dosimeters in form of layers for measurements aimed at the characterization of epithermal neutron beams has been studied. By means of dosimeters of different isotopic composition (standard, containing 10B or prepared with heavy water) placed against the collimator exit, the spatial distribution of gamma and fast neutron doses and of thermal neutron fluence are attained. In order to investigate the accuracy of the results obtained with in-air measurements, suitable MC simulations have been developed and experimental measurements have been performed utilizing Fricke gel dosimeters, thermoluminescence detectors and activation foils. The studies were related to the epithermal beam designed for BNCT irradiations at the research reactor LVR-15 (ƘeĆŸ). The results of calculation and measurements have revealed good consistency of gamma dose and fast neutron 2D distributions obtained with gel dosimeters in form of layers. In contrast, noticeable modification of thermal neutron fluence is caused by the neutron moderation produced by the dosimeter material. Fricke gel dosimeters in thin cylinders, with diameter not greater than 3 mm, have proved to give good results for thermal neutron profiling. For greater accuracy of all results, a better knowledge of the dependence of gel dosimeter sensitivity on radiation LET is needed

    The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives

    Get PDF
    Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index

    The response of a Bonner Sphere spectrometer to charged hadrons

    No full text
    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN

    Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Get PDF
    AbstractThe secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290mm (equivalent to the therapeutic range of 430MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on target are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shielding data for the design of future light-ion radiation therapy facilities

    Comparison of ventilation and cardiovascular parameters between prone thoracoscopic and Ivor Lewis esophagectomy

    No full text
    Thoracoscopic esophagectomy in the prone position is associated with better surgical ergonomics compared to the left lateral decubitus position due to the effects of gravity pooling blood outside the operative field and the reduced need for lung retraction. The aim of this study was to evaluate the physiological effects of prone thoracoscopic esophagectomy with single-lumen intubation on ventilation, respiratory gas exchange, and cardiovascular parameters. Thirty-two consecutive patients underwent esophagectomy either through a prone thoracoscopic approach or through a right thoracotomic approach. Samples of arterial and central venous blood, as well as ventilation and cardiovascular parameters were obtained at baseline, during induction of anesthesia, throughout the operation, and after extubation. Patients undergoing prone thoracoscopic esophagectomy showed higher oxygenation levels (p\ua0<\ua00.001), and a significantly lower mean pulmonary shunt fraction (p\ua0=\ua00.001). Perioperative hemodynamics remained stable throughout the surgical procedures. Thoracoscopic esophagectomy in the prone position with two-lung ventilation was associated with a significant improvement of global oxygen delivery and a significant reduction of the pulmonary shunt when compared to the Ivor Lewis operation
    • 

    corecore