37 research outputs found

    TNFα-mediated Hsd11b1 binding of NF-κB p65 is associated with suppression of 11β-HSD1 in muscle

    Get PDF
    The activity of the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone (11-dehydrocorticosterone (11-DHC)) (in mice) into the active glucocorticoid (GC) cortisol (corticosterone in mice), can amplify tissue GC exposure. Elevated TNFα is a common feature in a range of inflammatory disorders and is detrimental to muscle function in diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease.We have previously demonstrated that 11β-HSD1 activity is increased in the mesenchymal stromal cells (MSCs) by TNFα treatment and suggested that this is an autoregulatory anti-inflammatory mechanism. This upregulation was mediated by the P2 promoter of the Hsd11β1 gene and was dependent on the NF-kB signalling pathway. In this study, we show that in contrast to MSCs, in differentiated C2C12 and primary murine myotubes, TNFα suppresses Hsd11β1 mRNA expression and activity through the utilization of the alternative P1 promoter. As with MSCs, in response to TNFα treatment, NF-κB p65 was translocated to the nucleus. However, ChIP analysis demonstrated that the direct binding was seen at positionK218 toK245 bp of the Hsd11β1 gene's P1 promoter but not at the P2 promoter. These studies demonstrate the existence of differential regulation of 11β-HSD1 expression in muscle cells through TNFα/p65 signalling and the P1 promoter, further enhancing our understanding of the role of 11β-HSD1 in the context of inflammatory disease

    Crystal Structure of the Cofactor-Binding Domain of the Human Phase II Drug-Metabolism Enzyme UDP-Glucuronosyltransferase 2B7

    Get PDF
    Human UDP-glucuronosyltransferases (UGT) are the dominant phase II conjugative drug metabolism enzymes that also play a central role in the processing of a range of endobiotic compounds. UGTs catalyze the covalent addition of glucuronic acid sugar moieties to a host of therapeutics and environmental toxins, as well as to a variety of endogenous steroids and other signaling molecules. We report the 1.8 Å resolution apo crystal structure of the UDP-glucuronic acid binding domain of human UGT isoform 2B7 (UGT2B7), which catalyzes the conjugative elimination of opioid, antiviral, and anticancer drugs. This is the first crystal structure of any region of a mammalian UGT drug metabolism enzyme. Designed UGT2B7 mutants at residues predicted to interact with the UDP-glucuronic acid cofactor exhibited significantly impaired catalytic activity, with maximum effects observed for amino acids closest to the glucuronic acid sugar transferred to the acceptor molecule. Homology modeling of UGT2B7 with related plant flavonoid glucosyltransferases indicate that human UGTs share a common catalytic mechanism. Point mutations at predicted catalytic residues in UGT2B7 abrogated activity, strongly suggesting that human UGTs also utilize a serine hydrolase-like catalytic mechanism to facilitate glucuronic acid transfer

    PRMT5 is a critical regulator of breast cancer stem cell function via Histone Methylation and FOXP1 expression

    Get PDF
    Breast cancer progression, treatment resistance, and relapse are thought to originate from a small population of tumor cells, breast cancer stem cells (BCSCs). Identification of factors critical for BCSC function is therefore vital for the development of therapies. Here, we identify the argininemethyltransferase PRMT5 as a key in vitro and in vivo regulator of BCSC proliferation and self-renewal and establish FOXP1, a winged helix/forkhead transcription factor, as a critical effector of PRMT5-induced BCSC function. Mechanistically, PRMT5 recruitment to the FOXP1 promoter facilitates H3R2me2s, SET1 recruitment, H3K4me3, and gene expression. Our findings are clinically significant, as PRMT5 depletion within established tumor xenografts or treatment of patient- derived BCSCs with a pre-clinical PRMT5 inhibitor substantially reduces BCSC numbers. Together, our findings highlight the importance of PRMT5 in BCSC maintenance and suggest that small-molecule inhibitors of PRMT5 or downstream targets could be an effective strategy eliminating this cancer-causing population

    Induction of the nicotinamide riboside kinase NAD<sup>+</sup> salvage pathway in a model of sarcoplasmic reticulum dysfunction

    Get PDF
    Background Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11 beta-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. Methods We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD(+) precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. Results H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD(+) biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD(+) biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD(+) levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD(+)/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD(+) availability. Conclusions These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD(+) salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved

    saeRS and sarA Act Synergistically to Repress Protease Production and Promote Biofilm Formation in Staphylococcus aureus

    Get PDF
    Mutation of the staphylococcal accessory regulator (sarA) limits biofilm formation in diverse strains of Staphylococcus aureus, but there are exceptions. One of these is the commonly studied strain Newman. This strain has two defects of potential relevance, the first being mutations that preclude anchoring of the fibronectin-binding proteins FnbA and FnbB to the cell wall, and the second being a point mutation in saeS that results in constitutive activation of the saePQRS regulatory system. We repaired these defects to determine whether either plays a role in biofilm formation and, if so, whether this could account for the reduced impact of sarA in Newman. Restoration of surface-anchored FnbA enhanced biofilm formation, but mutation of sarA in this fnbA-positive strain increased rather than decreased biofilm formation. Mutation of sarA in an saeS-repaired derivative of Newman (P18L) or a Newman saeRS mutant (ΔsaeRS) resulted in a biofilm-deficient phenotype like that observed in clinical isolates, even in the absence of surface-anchored FnbA. These phenotypes were correlated with increased production of extracellular proteases and decreased accumulation of FnbA and/or Spa in the P18L and ΔsaeRS sarA mutants by comparison to the Newman sarA mutant. The reduced accumulation of Spa was reversed by mutation of the gene encoding aureolysin, while the reduced accumulation of FnbA was reversed by mutation of the sspABC operon. These results demonstrate that saeRS and sarA act synergistically to repress the production of extracellular proteases that would otherwise limit accumulation of critical proteins that contribute to biofilm formation, with constitutive activation of saeRS limiting protease production, even in a sarA mutant, to a degree that can be correlated with increased enhanced capacity to form a biofilm. Although it remains unclear whether these effects are mediated directly or indirectly, studies done with an sspA::lux reporter suggest they are mediated at a transcriptional level

    Epistatic Relationships between sarA and agr in Staphylococcus aureus Biofilm Formation

    Get PDF
    Background: The accessory gene regulator (agr) and staphylococcal accessory regulator (sarA) play opposing roles in Staphylococcus aureus biofilm formation. There is mounting evidence to suggest that these opposing roles are therapeutically relevant in that mutation of agr results in increased biofilm formation and decreased antibiotic susceptibility while mutation of sarA has the opposite effect. To the extent that induction of agr or inhibition of sarA could potentially be used to limit biofilm formation, this makes it important to understand the epistatic relationships between these two loci. Methodology/Principal Findings: We generated isogenic sarA and agr mutants in clinical isolates of S. aureus and assessed the relative impact on biofilm formation. Mutation of agr resulted in an increased capacity to forma biofilmin the 8325-4 laboratory strain RN6390 but had little impact in clinical isolates S. aureus. In contrast, mutation of sarA resulted in a reduced capacity to form a biofilm in all clinical isolates irrespective of the functional status of agr. This suggests that the regulatory role of sarA in biofilm formation is independent of the interaction between sarA and agr and that sarA is epistatic to agr in this context. This was confirmed by demonstrating that restoration of sarA function restored the ability to form a biofilm even in the corresponding agr mutants. Mutation of sarA in clinical isolates also resulted in increased production of extracellular proteases and extracellular nucleases, both of which contributed to the biofilm-deficient phenotype of sarA mutants. However, studies comparing different strains with and without proteases inhibitors and/or mutation of the nuclease genes demonstrated that the agr-independent, sarA-mediated repression of extracellular proteases plays a primary role in this regard. Conclusions and Significance: The results we report suggest that inhibitors of sarA-mediated regulation could be used to limit biofilm formation in S. aureus and that the efficacy of such inhibitors would not be limited by spontaneous mutation of agr in the human host

    Carbonyl reduction of triadimefon by human and rodent 11β-hydroxysteroid dehydrogenase 1

    No full text
    11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the conversion of inactive 11-oxo glucocorticoids (endogenous cortisone, 11-dehydrocorticosterone and synthetic prednisone) to their potent 11β-hydroxyl forms (cortisol, corticosterone and prednisolone). Besides, 11β-HSD1 accepts several other substrates. Using rodent liver microsomes and the unspecific inhibitor glycyrrhetinic acid, it has been proposed earlier that 11β-HSD1 catalyzes the reversible conversion of the fungicide triadimefon to triadimenol. In the present study, recombinant human, rat and mouse enzymes together with a highly selective 11β-HSD1 inhibitor were applied to assess the role of 11β-HSD1 in the reduction of triadimefon and to uncover species-specific differences. To further demonstrate the role of 11β-HSD1 in the carbonyl reduction of triadimefon, microsomes from liver-specific 11β-HSD1-deficient mice were employed. Molecular docking was applied to investigate substrate binding. The results revealed important species differences and demonstrated the irreversible 11β-HSD1-dependent reduction of triadimefon. Human liver microsomes showed 4 and 8 times higher activity than rat and mouse liver microsomes. The apparent Vmax/Km of recombinant human 11β-HSD1 was 5 and 15 times higher than that of mouse and rat 11β-HSD1, respectively, indicating isoform-specific differences and different expression levels for the three species. Experiments using inhibitors and microsomes from 11β-HSD1-deficient mice indicated that 11β-HSD1 is the major if not only enzyme responsible for triadimenol formation. The IC50 values of triadimefon and triadimenol for cortisone reduction suggested that exposure to these xenobiotica unlikely impairs the 11β-HSD1-dependent glucocorticoid activation. However, elevated glucocorticoids during stress or upon pharmacological administration likely inhibit 11β-HSD1-dependent metabolism of triadimefon in humans
    corecore