11 research outputs found

    Role of the ubiquitin-binding domain of Polη in Rad18-independent translesion DNA synthesis in human cell extracts

    Get PDF
    In eukaryotic cells, the Rad6/Rad18-dependent monoubiquitination of the proliferating cell nuclear antigen (PCNA) plays an essential role in the switching between replication and translesion DNA synthesis (TLS). The DNA polymerase Polη binds to PCNA via a consensus C-terminal PCNA-interacting protein (PIP) motif. It also specifically interacts with monoubiquitinated PCNA thanks to a recently identified ubiquitin-binding domain (UBZ). To investigate whether the TLS activity of Polη is always coupled to PCNA monoubiquitination, we monitor the ability of cell-free extracts to perform DNA synthesis across different types of lesions. We observe that a cis-syn cyclobutane thymine dimer (TT-CPD), but not a N-2-acetylaminofluorene-guanine (G-AAF) adduct, is efficiently bypassed in extracts from Rad18-deficient cells, thus demonstrating the existence of a Polη-dependent and Rad18-independent TLS pathway. In addition, by complementing Polη-deficient cells with PIP and UBZ mutants, we show that each of these domains contributes to Polη activity. The finding that the bypass of a CPD lesion in vitro does not require Ub-PCNA but nevertheless depends on the UBZ domain of Polη, reveals that this domain may play a novel role in the TLS process that is not related to the monoubiquitination status of PCNA

    Evidence for a Rad18-Independent Frameshift Mutagenesis Pathway in Human Cell-Free Extracts

    Get PDF
    Bypass of replication blocks by specialized DNA polymerases is crucial for cell survival but may promote mutagenesis and genome instability. To gain insight into mutagenic sub-pathways that coexist in mammalian cells, we examined N-2-acetylaminofluorene (AAF)-induced frameshift mutagenesis by means of SV40-based shuttle vectors containing a single adduct. We found that in mammalian cells, as previously observed in E. coli, modification of the third guanine of two target sequences, 5'-GGG-3' (3G) and 5'-GGCGCC-3' (NarI site), induces –1 and –2 frameshift mutations, respectively. Using an in vitro assay for translesion synthesis, we investigated the biochemical control of these events. We showed that Pol eta, but neither Pol iota nor Pol zeta, plays a major role in the frameshift bypass of the AAF adduct located in the 3G sequence. By complementing PCNA-depleted extracts with either a wild-type or a non-ubiquitinatable form of PCNA, we found that this Pol eta-mediated pathway requires Rad18 and ubiquitination of PCNA. In contrast, when the AAF adduct is located within the NarI site, TLS is only partially dependent upon Pol eta and Rad18, unravelling the existence of alternative pathways that concurrently bypass this lesion

    A fast method for analyzing essential protein mutants in human cells.

    No full text
    Here we developed a complementation method for the study of essential genes in live human cells using the CRISPR/Cas9 system. Proteins encoded by essential genes were expressed using a derivative of the pCEP4 compensating plasmid in combination with Cas9 endonuclease targeting of the chromosomal genes. We show that this strategy can be applied to essential genes, such as those coding for proliferating cell nuclear antigen (PCNA) and DNA polymerase delta subunit 2 (POLD2). As demonstrated for the PCNA protein, our method allows mutational analysis of essential protein-coding sequences in live cells.papers2://publication/uuid/A3ECD182-F6C3-46A5-8C75-2C248907BCD

    Proteomic Analysis of DNA Synthesis on a Structured DNA Template in Human Cellular Extracts: Interplay Between NHEJ and Replication-Associated Proteins

    No full text
    It is established that short inverted repeats trigger base substitution mutagenesis in human cells. However, how the replication machinery deals with structured DNA is unknown. It has been previously reported that in human cell-free extracts, DNA primer extension using a structured single-stranded template is transiently blocked at DNA hairpins. Here, the proteomic analysis of proteins bound to the DNA template is reported and evidence that the DNA-PK complex (DNA-PKcs and the Ku heterodimer) recognizes, and is activated by, structured single-stranded DNA is provided. Hijacking the DNA-PK complex by double-stranded oligonucleotides results in a large removal of the pausing sites and an elevated DNA extension efficiency. Conversely, DNA-PKcs inhibition results in its stabilization on the template, along with other proteins acting downstream in the Non-Homologous End-Joining (NHEJ) pathway, especially the XRCC4-DNA ligase 4 complex and the cofactor PAXX. Retention of NHEJ factors to the DNA in the absence of DNA-PKcs activity correlates with additional halts of primer extension, suggesting that these proteins hinder the progression of the DNA synthesis at these sites. Overall these results raise the possibility that, upon binding to hairpins formed onto ssDNA during fork progression, the DNA-PK complex interferes with replication fork dynamics in vivo

    FF483-484 motif of human Polη mediates its interaction with the POLD2 subunit of Polδ and contributes to DNA damage tolerance.

    No full text
    Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483-484 amino acids in the human Polη (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase δ, both in vitro and in vivo. Mutating this motif impairs Polη function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Polη, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Polη, necessary for the Polη/POLD2 interaction, is required for the establishment of an efficient TLS complex.papers2://publication/uuid/9B4D348B-6180-4A06-A0F6-5C48A3345DA2PMC434451

    Analysis of Rad18 dependence of the G-AAF bypass in HCT116 cell-free extracts.

    No full text
    <p>HCT116 cell-free extracts, wild-type (WT) and Rad18−/− (20 mg), were incubated 30 min at 37°C in the presence of 10 fmoles of AAF-modified substrates either at the 3G sequence or at the NarI site in a final volume of 6.25 ml, as indicated. The samples were analysed by electrophoresis through a 8% denaturing polyacrylamide gel. L-1 is a product generated if synthesis is blocked one nucleotide before and opposite the lesion, respectively. TLS0 and TLS-1 or –2 are products from TLS via non-slipped and slipped intermediates, respectively.Quantitative analysis of experiments with two independent extracts are presented.</p

    Analysis of Ub-PCNA dependence of G-AAF bypass in MRC5 cell-free extracts.

    No full text
    <p>Mock depleted (M) or PCNA depleted MRC5 cell extracts (20 mg) were incubated 30 min at 37°C in the presence of 10 fmoles of unmodified or modified substrates in a final volume of 6.25 ml, as indicated. Recombinant wild-type (WT) or mutated K164R PCNA (60 ng) was added to the reactions, as indicated. Aliquotes of the samples were analysed either by Western blot with an anti-PCNA antibody (panel A) or by 8% denaturing polyacrylamide gel electrophoresis (panel B). L-1 is a product generated if synthesis is blocked one nucleotide before the lesion. TLS0 and TLS-1 or –2 are products from TLS via non-slipped and slipped intermediates, respectively. FL are Full Length products.</p

    A highly virulent variant of HIV-1 circulating in the Netherlands

    No full text
    We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence
    corecore