9 research outputs found

    A massive nebula around the Luminous Blue Variable star RMC143 revealed by ALMA

    Get PDF
    The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30~Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ3\sigma sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of 0.055±0.018 M0.055\pm0.018~M_{\odot} (assuming κ850=1.7cm2g1\kappa_{850}=1.7\rm\,cm^{2}\,g^{-1}). To date, RMC143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of 8500\sim 8500~K, luminosity of log(L/L)=5.32(L/L_{\odot}) = 5.32, and a relatively high mass-loss rate of 1.0×105 M1.0 \times 10^{-5}~M_{\odot}~yr1^{-1}. The luminosity is much lower than previously thought, which implies that the current stellar mass of 8 M\sim8~M_{\odot} is comparable to its nebular mass of 5.5 M\sim 5.5~M_{\odot} (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30~Doradus star-forming region.Comment: Paper accepted by A&A on 09/05/2019 and in proof stage. Second comments by referee are included in this versio

    Anomalous Microwave Emission in HII Regions: Is it Really Anomalous? The Case of RCW 49

    Get PDF
    The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (~3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7'. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persists on angular scales from 3farcm4 to 0farcs4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ~30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks

    Signatures of an eruptive phase before the explosion of the peculiar core-collapse SN 2013gc

    Get PDF
    We present photometric and spectroscopic analysis of the peculiar core-collapse SN 2013gc, spanning seven years of observations. The light curve shows an early maximum followed by a fast decline and a phase of almost constant luminosity. At +200 days from maximum, a brightening of 1 mag is observed in all bands, followed by a steep linear luminosity decline after +300 d. In archival images taken between 1.5 and 2.5 years before the explosion, a weak source is visible at the supernova location, with mag\approx20. The early supernova spectra show Balmer lines, with a narrow (\sim560 km s1^{-1}) P-Cygni absorption superimposed on a broad (\sim3400 km s1^{-1}) component, typical of type IIn events. Through a comparison of colour curves, absolute light curves and spectra of SN 2013gc with a sample of supernovae IIn, we conclude that SN 2013gc is a member of the so-called type IId subgroup. The complex profile of the Hα\alpha line suggests a composite circumstellar medium geometry, with a combination of lower velocity, spherically symmetric gas and a more rapidly expanding bilobed feature. This circumstellar medium distribution has been likely formed through major mass-loss events, that we directly observed from 3 years before the explosion. The modest luminosity (MI16.5M_I\sim-16.5 near maximum) of SN 2013gc at all phases, the very small amount of ejected 56^{56}Ni (of the order of 10310^{-3} M_\odot), the major pre-supernova stellar activity and the lack of prominent [O I] lines in late-time spectra support a fall-back core-collapse scenario for the massive progenitor of SN~2013gc.Comment: 20 pages, 11 figures, 8 tables, accepted by MNRA

    In-orbit, Automatic and Periodic Flat-field Calculation of NewSat Mark IV Imagery: A High Resolution Microsatellite Constellation

    Get PDF
    Satellogic is a vertically integrated geospatial company, designing, building and operating its own fleet of Earth Observation (EO) satellites. Satellogic is developing and continuously improving a scalable, fully automated EO platform, able to remap the entire planet at both high-cadence and high-resolution. Satellogic’s multispectral payloads collect sub-meter resolution images from an altitude of ~475 km in four spectral bands (Blue, Green, Red, Near-IR). The flat-field correction of TOA imagery can be challenging for light-weight satellites with no moving parts. On-orbit calculation of flat fields allows to recreate the optical and thermal conditions of the operative satellites, assess changes during the launch and perform periodic recalibration to correct for any new artifacts, such as foreign object debris. Dedicated campaigns to collect specific captures for flat-field calculation entail significant operational cost when scaled to the entire fleet. In Satellogic, we designed an on-orbit calibration procedure using only operational imagery, which allows fast, periodic and automatic corrections of each satellite’s imagery at zero cost. In this talk we will present our automatic end-to-end calibration procedure, including the validation adopted to periodically monitor the intra-pixel radiometric accuracy of each satellite. We will conclude by comparing the results of the flat-field frame quality from the entire operational fleet over time

    The ASKAP-EMU Early Science Project: 888 MHz radio continuum survey of the Large Magellanic Cloud

    Get PDF
    International audienceABSTRACT We present an analysis of a new 120 deg2 radio continuum image of the Large Magellanic Cloud (LMC) at 888 MHz with a bandwidth of 288 MHz and beam size of 13.{_{.}^{\prime\prime}}9 × 12.{_{.}^{\prime\prime}}1 from the Australian Square Kilometre Array Pathfinder processed as part of the Evolutionary Map of the Universe survey. The median root mean squared noise is 58 μ\muJy beam−1. We present a catalogue of 54 612 sources, divided over a Gold list (30 866 sources) complete down to 0.5 mJy uniformly across the field, a Silver list (22 080 sources) reaching down to <0.2 mJy, and a Bronze list (1666 sources) of visually inspected sources in areas of high noise and/or near bright complex emission. We discuss detections of planetary nebulae and their radio luminosity function, young stellar objects showing a correlation between radio luminosity and gas temperature, novae and X-ray binaries in the LMC, and active stars in the Galactic foreground that may become a significant population below this flux level. We present examples of diffuse emission in the LMC (H ii regions, supernova remnants, bubbles) and distant galaxies showcasing spectacular interaction between jets and intracluster medium. Among 14 333 infrared counterparts of the predominantly background radio source population, we find that star-forming galaxies become more prominent below 3 mJy compared to active galactic nuclei. We combine the new 888 MHz data with archival Australia Telescope Compact Array data at 1.4 GHz to determine spectral indices; the vast majority display synchrotron emission but flatter spectra occur too. We argue that the most extreme spectral index values are due to variability
    corecore