3,209 research outputs found
Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector
We present an update of our previous study (astro-ph/0112312) on how
oscillations affect the signal from a supernova core collapse observed in the
LVD detector at LNGS. In this paper we use a recent, more precise determination
of the cross section (astro-ph/0302055) to calculate the expected number of
inverse beta decay events, we introduce in the simulation also the -{\rm
Fe} interactions, we include the Earth matter effects and, finally, we study
also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200
Generalized CMB initial conditions with pre-equality magnetic fields
The most general initial conditions of CMB anisotropies, compatible with the
presence of pre-equality magnetic fields, are derived. When the plasma is
composed by photons, baryons, electrons, CDM particles and neutrinos, the
initial data of the truncated Einstein-Boltzmann hierarchy contemplate one
magnetized adiabatic mode and four (magnetized) non-adiabatic modes. After
obtaining the analytical form of the various solutions, the Einstein-Boltzmann
hierarchy is numerically integrated for the corresponding sets of initial data.
The TT, TE and EE angular power spectra are illustrated and discussed for the
magnetized generalization of the CDM-radiation mode, of the baryon-radiation
mode and of the non-adiabatic mode of the neutrino sector. Mixtures of initial
conditions are examined by requiring that the magnetized adiabatic mode
dominates over the remaining non-adiabatic contributions. In the latter case,
possible degeneracies between complementary sets of initial data might be
avoided through the combined analysis of the TT, TE and EE angular power
spectra at high multipoles (i.e. ).Comment: 28 pages, 24 included figures in eps styl
Predicting Proton-Air Cross Sections at sqrt s ~30 TeV, using Accelerator and Cosmic Ray Data
We use the high energy predictions of a QCD-inspired parameterization of all
accelerator data on forward proton-proton and antiproton-proton scattering
amplitudes, along with Glauber theory, to predict proton-air cross sections at
energies near \sqrt s \approx 30 TeV. The parameterization of the proton-proton
cross section incorporates analyticity and unitarity, and demands that the
asymptotic proton is a black disk of soft partons. By comparing with the p-air
cosmic ray measurements, our analysis results in a constraint on the inclusive
particle production cross section.Comment: 9 pages, Revtex, uses epsfig.sty, 5 postscript figures. Minor text
revisions. Systematic errors in k included, procedure for extracting k
clarified. Previously undefined symbols now define
On the measurement of the proton-air cross section using longitudinal shower profiles
In this paper, we will discuss the prospects of deducing the proton-air cross
section from fluorescence telescope measurements of extensive air showers. As
it is not possible to observe the point of first interaction
directly, other observables closely linked to must be inferred from
the longitudinal profiles. This introduces a dependence on the models used to
describe the shower development. The most straightforward candidate for a good
correlation to is the depth of shower maximum . We
will discuss the sensitivity of an -based analysis on and quantify the systematic uncertainties arising from the model
dependence, parameters of the reconstruction method itself and a possible
non-proton contamination of the selected shower sample.Comment: 4 pages, Proceedings for ISVHECRI Weihei 200
Ultra-Transparent Antarctic Ice as a Supernova Detector
We have simulated the response of a high energy neutrino telescope in deep
Antarctic ice to the stream of low energy neutrinos produced by a supernova.
The passage of a large flux of MeV-energy neutrinos during a period of seconds
will be detected as an excess of single counting rates in all individual
optical modules. We update here a previous estimate of the performance of such
an instrument taking into account the recent discovery of absorption lengths of
several hundred meters for near-UV photons in natural deep ice. The existing
AMANDA detector can, even by the most conservative estimates, act as a galactic
supernova watch.Comment: 9 pages, Revtex file, no figures. Postscript file also available from
http://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.Z or from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-888.ps.
Search for astro-gravity correlations
A new approach in the gravitational wave experiment is considered. In
addition to the old method of searching for coincident reactions of two
separated gravitational antennae it was proposed to seek perturbations of the
gravitational detector noise background correlated with astrophysical events
such as neutrino and gamma ray bursts which can be relaibly registered by
correspondent sensors. A general algorithm for this approach is developed. Its
efficiency is demonstrated in reanalysis of the old data concerning the
phenomenon of neutrino-gravity correlation registered during of SN1987A
explosion.Comment: 29 pages (LaTeX), 4 figures (EPS
Results of low energy background measurements with the Liquid Scintillation Detector (LSD) of the Mont Blanc Laboratory
The 90 tons liquid scintillation detector (LSD) is fully running since October 1984, at a depth of 5,200 hg/sq cm of standard rock underground. The main goal is to search for neutrino bursts from collapsing stars. The experiment is very sensitive to detect low energy particles and has a very good signature to gamma-rays from (n,p) reaction which follows the upsilon e + p yields n + e sup + neutrino capture. The analysis of data is presented and the preliminary results on low energy measurements are discussed
On the angular distribution of extensive air showers
Angular distributions of extensive air showers with different number of
charged particles in the range 2.5x10^5--4x10^7 are derived using the
experimental data obtained with the EAS MSU array. Possible approximations of
the obtained distributions with different empiric functions available in
literature, are analysed. It is shown that the exponential function provides
the best approximation of the angular distributions in the sense of the
chi-squared criterion.Comment: 5 pages including 1 figur
- …
