4 research outputs found

    A Convex Reconstruction Model for X-ray Tomographic Imaging with Uncertain Flat-fields

    Get PDF
    Classical methods for X-ray computed tomography are based on the assumption that the X-ray source intensity is known, but in practice, the intensity is measured and hence uncertain. Under normal operating conditions, when the exposure time is sufficiently high, this kind of uncertainty typically has a negligible effect on the reconstruction quality. However, in time- or dose-limited applications such as dynamic CT, this uncertainty may cause severe and systematic artifacts known as ring artifacts. By carefully modeling the measurement process and by taking uncertainties into account, we derive a new convex model that leads to improved reconstructions despite poor quality measurements. We demonstrate the effectiveness of the methodology based on simulated and real data sets.Comment: Accepted at IEEE Transactions on Computational Imagin

    Model-Based X-Ray-Induced Acoustic Computed Tomography.

    No full text
    X-ray-induced acoustic computed tomography (XACT) provides X-ray absorption-based contrast with acoustic detection. For its clinical translation, XACT imaging often has a limited field of view. This can result in image artifacts and overall loss of quantification accuracy. In this article, we aim to demonstrate model-based XACT image reconstruction to address these problems. An efficient matrix-free implementation of the regularized LSQR (MF-LSQR)-based minimization scheme and a noniterative model back-projection (MBP) scheme for computing XACT reconstructions have been demonstrated in this article. The proposed algorithms have been numerically validated and then used to perform reconstructions from experimental measurements obtained from an XACT setup. While the commonly used back-projection (BP) algorithm produces limited-view and noisy artifacts in the region of interest (ROI), model-based LSQR minimization overcomes these issues. The model-based algorithms also reduce the ring artifacts caused due to the nonuniformity response of the multichannel data acquisition. Using the model-based reconstruction algorithms, we are able to obtain reasonable XACT reconstructions for acoustic measurements of up to 120° view. Although the MBP is more efficient than the model-based LSQR algorithm, it provides only the structural information of the ROI. Overall, it has been demonstrated that the model-based image reconstruction yields better image quality for XACT than the standard BP. Moreover, the combination of model-based image reconstruction with different regularization methods can solve the limited-view problem for XACT imaging (in many realistic cases where the full-view dataset is unavailable), and hence pave the way for future clinical translation
    corecore