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A Convex Reconstruction Model for X-ray
Tomographic Imaging with Uncertain Flat-fields

Hari Om Aggrawal, Martin S. Andersen, Sean Rose, and Emil Y. Sidky

Abstract—Classical methods for X-ray computed tomography
are based on the assumption that the X-ray source intensity
is known, but in practice, the intensity is measured and hence
uncertain. Under normal operating conditions, when the exposure
time is sufficiently high, this kind of uncertainty typically has
a negligible effect on the reconstruction quality. However, in
time- or dose-limited applications such as dynamic CT, this
uncertainty may cause severe and systematic artifacts known as
ring artifacts. By carefully modeling the measurement process
and by taking uncertainties into account, we derive a new
convex model that leads to improved reconstructions despite poor
quality measurements. We demonstrate the effectiveness of the
methodology based on simulated and real data sets.

Index Terms—X-ray computed tomography, ring artifacts, low
intensity, reconstruction methods.

I. INTRODUCTION

X -RAY computed tomography (CT) is a non-invasive
method that is used to image the internal structure of

objects without cutting or breaking them. An X-ray source
illuminates an object from different directions while detec-
tors capture the attenuated X-rays. As the X-rays propagate
through the object along straight lines, they are attenuated
exponentially with a rate of decay that depends on the material.
This relationship is explained by the Lambert–Beer law which
forms the basis of major X-ray CT reconstruction models
and methods; see e.g. [1]. Reconstruction methods estimate
the spacial attenuation of the object of interest based on a
number of X-ray images, given the measurement geometry,
the source intensity, and possibly some assumptions on the
statistical nature of the measurement process.

In practice, the source intensity is never known exactly, but
it is estimated by acquiring a number of X-ray images without
an object in the scanner. Such measurements are also known as
air scans [2], flat-fields, or white-fields [3]. The elementwise
mean of these measurements provides an estimate of the flat-
field intensity and may be used for computing reconstructions.
However, in practice the measurements are noisy, and hence
the flat-field intensity estimate is a random variable whose
variance is proportional to the ratio of the flat-field intensity
and number of flat-field samples [4]. Consequently, the signal-
to-noise ratio (SNR) of the flat-field intensity estimate is
proportional to the square root of the product of the flat-field
intensity and the number of samples. Therefore, if the flat-field
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intensity is low or if the number of flat-field measurements
is small, the flat-field estimation error may be significant
and lead to reconstruction artifacts and errors. Since the flat-
field estimate is used to normalize measurements from all
projection directions, the estimation errors result in systematic
reconstruction errors. These are known as ring artifacts [5]
since they appear as concentric circles superimposed on the
reconstruction, and they are a common problem that can mask
important features in the reconstructed image [6], [7]. Ring
artifacts may not only occur because of flat-field estimation er-
rors; miscalibrated or dead detector elements and non-uniform
sensitivities may also systematically corrupt the measurements
and lead to ring artifacts in the reconstruction [3].

An experimental study [8] has pointed out that the ring
artifacts are more severe when the X-ray source intensity
is low, and hence a reconstruction from low-intensity mea-
surements may be very sensitive to the assumptions upon
which the reconstruction method is based. The problem may
arise when the acquisition time is limited, e.g., in dynamic or
time-resolved tomography, or if the application imposes strict
dose limitations. Thus, tomographic reconstruction based on
low-intensity measurements is a challenging problem, in part
because of the low SNR.

One approach to combating ring artifacts is to move the
detector array between projections [9]. This has an averaging
effect on the systematic error due to flat-field estimation errors
and often results in noticeable improvements, but it does not
address or model the underlying cause. Moreover, it requires
special hardware for the acquisition, and it is not suited for
applications such as dynamic CT where fast acquisition times
are important. Alternative software-based methods to mitigate
ring artifacts also exist. Roughly speaking, these methods can
be put into three categories: sinogram preprocessing meth-
ods [10]–[14], combined ring reduction and reconstruction
methods [15], [16], and post-processing methods that reduce
or remove rings from a reconstruction [3], [17], [18]. The
preprocessing methods detect and remove/reduce stripes in
the sinogram which, in turn, reduces the ring artifacts in
the image domain. These algorithms are typically based on
Fourier domain filtering [11], wavelet domain filtering [12], or
a normalization of measurements by estimating the sensitivity
of each detector pixel [14]. The post-processing methods
transform the reconstructed image from Cartesian to polar
coordinates [3] and remove stripes using, e.g., a median filter
[17], a wavelet filter, or a variational model for destriping [18].

In two recently proposed methods [15], [16], ring artifact
correction is included as an intrinsic part of the reconstruction
process. Motivated by the cause of ring artifacts, which
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appear as stripes in the sinogram domain, the sinogram is
split into the sum of the true sinogram and a component
which represents the systematic stripe errors. Although the
combined ring-reduction and reconstruction methods do take
the systematic nature of the flat-field estimation errors in the
sinogram domain into account, they do not explicitly model
the source of the errors nor their statistical properties.

Existing methods for mitigating ring artifacts have been
shown to work reasonably well when applied to measurement
data with high or acceptable SNRs. However, we are not aware
of any studies that investigate ring artifact correction for low
SNR measurements and where the intensity of X-ray beam
is assumed to be uncertain. To this end, we derive a new
reconstruction model that is based on a rigorous statistical de-
scription of our model assumptions. Unlike existing correction
methods that, roughly speaking, are based on the geometric
nature of ring artifacts in either the sinogram or the recon-
struction, our approach is based on a model of a fundamental
cause of these artifacts. The resulting reconstruction method
jointly estimates the flat-field and the attenuation image, and
we show that the estimation problem can be solved efficiently
by solving a convex optimization problem. We also derive a
quadratic approximation model which is similar to an existing
weighted least-squares reconstruction model.

Outline: Section II introduces our model assumptions and
reviews some existing approaches to CT reconstruction based
on low SNR measurements. We illustrate the sensitivity of
these existing methods to flat-field intensity estimation er-
rors. Section III proposes a new reconstruction model and
discusses different parameter selection strategies. We describe
our numerical implementation in Section IV, and we validate
the proposed model based on simulated data as well as real
tomographic measurements in Section V. Section VI concludes
the paper.

Notation: The set Rn denotes the n-dimensional real space,
Rn+ is the nonnegative orthant of Rn, and Rm×n is the set of
m×n real-valued matrices. Upper case letters denote matrices,
lower case letters denote vectors or scalars, and boldface
letters denote random variables. Given a vector x ∈ Rn, the
matrix diag(x) is the n×n diagonal matrix with the elements
of x on the diagonal. Similarly, given a set of r square
matrices S1, . . . , Sr, the matrix blkdiag(S1, . . . , Sr) denotes
the block-diagonal matrix with diagonal blocks S1, . . . , Sr.
The vector ei denotes the ith column of an identity matrix,
and 1 denotes a vector of ones. Given a vector x ∈ Rn,
the notation log(x) and exp(x) is interpreted as elementwise
logarithm and exponentiation. A ⊗ B denotes the Kronecker
product of A ∈ Rm×n and B ∈ Rp×q , ‖A‖F denotes the
Frobenius norm of A, and |A| ∈ Rm×n is the element-wise
absolute value of A. The vector y = vec(Y ) denotes the
vector obtained by stacking the columns of the matrix Y .
Given a discrete random variable y, the probability of y = y
is P(y = y), or using shorthand notation, P(y). Similarly,
given a continuous random variable z, P(z) is shorthand for
the probability density associated with z, evaluated at z, and
finally, E[z] denotes the expectation of z.

II. CONVENTIONAL RECONSTRUCTION APPROACH

A. System and Measurement Model

The Lambert–Beer law describes how an X-ray beam is at-
tenuated as it travels through an object that is characterized by
a spatial attenuation function µ(x). Specifically, the incident
intensity of an X-ray beam on a detector is given by

I ≈ I0 exp

(
−
∫
l

µ(x) dx

)
(1)

where I0 is the intensity of the X-ray source, and l denotes
the line segment between the source and a detector. This
description does not take the detector efficiency and the
statistical nature of the photon arrival process into account.
For photon-counting detectors, it is common to assume that
the photon arrival process is a Poisson process, and each
measurement is assumed to be a sample from a Poisson
distribution whose mean is prescribed by the Lambert–Beer
law. Here we will consider a two-dimensional geometry where
p projections are acquired using a one-dimensional detector
array with r detector elements. We will use the notation yij to
denote the measurement obtained with detector element i and
projection j, and we will assume that the ith detector element
has efficiency ηi ∈ (0, 1] such that the effective intensity is
vi = ηiI0. Thus, with the assumption that the arrival process
is Poisson process, yij is a realization of a random variable yij
which, conditioned on µ and vi, is a Poisson random variable
whose mean is prescribed by the Lambert–Beer law, i.e.,

yij | µ, vi ∼ Poisson

(
vi exp

(
−
∫
lij

µ(x) dx

))
(2)

where lij notes the line segment between the ith detector
element and the source for projection angle j. For ease of
notation, we define a matrix random variable Y of size r× p
with elements yij , and similarly, the r × p matrix Y denotes
a realization of Y and y = vec(Y ).

The attenuation function µ(x) may be discretized by using
a parameterization

µ(x) =
n∑
k=1

ukµk(x) (3)

where µk(x) is one of n basis functions (e.g., a pixel or voxel
basis), and u ∈ Rn is a vector of unknowns (e.g., pixel or
voxel values). With this parameterization, the line integrals in
(2) can be expressed as∫

lij

µ(x) dx = eTi Aju

where the elements of the matrix Aj ∈ Rr×n are given by

(Aj)ik =

∫
lij

µk(x) dx,

and hence the columns of Y satisfy

E[yj |u, v] = diag(v) exp(−Aju), j = 1, . . . , p

where v = (v1, . . . , vr).
In practice, the vector v is unknown and must be measured.

As mentioned in the introduction, the measurements of v are
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often referred to as flat-field measurements and are simply
measurements obtained without any object in the CT scanner.
We will assume that s flat-field measurements are acquired for
each detector element based on the flat-field measuring model

fij | vi ∼ Poisson (vi) (4)

for i = 1, . . . , r and j = 1, . . . , s, and F denotes a r×s matrix
random variable with elements fij . As for the measurements
Y , the matrix F ∈ Rr×s denotes a realization of F.

B. Maximum Likelihood Estimation

Given the flat-field measurements F , a maximum likelihood
(ML) estimate of v is given by

v̂f = argmin
v
{− log P(F | v)} (5)

= argmin
v

{
s1T v − 1TFT log(v)

}
=

1

s
F1,

i.e., v̂f is simply the arithmetic average of the s flat-field
measurements. This estimate can be used to compute an
approximate ML estimate of the vector u which is given by

ûy = argmin
u
{− log P(Y | u, v̂f)} (6)

= argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu
}

where A ∈ Rrp×n is defined as A = [AT1 · · · ATp ]T . The
estimation problem (6) is a convex optimization problem, and
it is essentially an approximate ML estimation problem since
with our model assumptions, the true likelihood P(Y | u, v)
is a function of both u and v. We will return to this issue in
the next section.

If y is positive, a quadratic approximation of (6) can be
obtained by means of a second-order Taylor expansion of the
likelihood function [19], and this yields the following weighted
least-squares objective function

1

2
‖diag(y)1/2(Au− b)‖22 (7)

where b = 1 ⊗ log(v̂f) − log(y). Notice that if A has full
rank and rp ≤ n, both (6) and the quadratic approximation
(7) reduce to the problem of solving the consistent system
of equations Au = b, but the two problems are generally
different when the system of equations Au = b is inconsistent.
The noise properties of reconstructions based on the weighted
least-squares objective (7) have been studied in [20].

C. The Effect of Flat-field Estimation Errors

The flat-field estimate v̂f in (5) satisfies E[v̂f ] = v,
and hence it is an unbiased estimate. However, v̂f is it-
self a random variable with covariance (1/s)diag(v), and
the flat-field estimation error may lead to artifacts in the
reconstruction. To study how flat-field estimation errors in-
fluence the reconstruction, we now consider a simplified
model based on Gaussian approximations. Specifically, we
assume that (v̂f)i|vi ∼ N (vi, s

−1vi) and yij |vi, u ∼
N (vi exp(−eTi Aju), vi exp(−eTi Aju)). With these assump-
tions, bij = log((v̂f)i) − log(yij) can be approximated by

linearizing each of the log terms around the mean of their
arguments, i.e.,

bij ≈ log(vi) +
(v̂f)i − vi

vi
− log(E[yij ])−

yij − E[yij ]

E[yij ]

= eTi Aju+ zi + wij

for i = 1, . . . , r and j = 1, . . . , p, and where

zi = ((v̂f)i − vi)/vi, zi ∼ N (0, (svi)
−1)

and

wij = (yij − E[yij ])/E[yij ], wij ∼ N (0, v−1
i exp(eTi Aju)).

The terms zi arise because of the flat-field estimation errors,
and the terms wij represent the effect of measurement noise.
If we define z = (z1, . . . , zr) and w = vec(W) where W is
the r × p matrix with elements wij , then

b ≈ Au+ 1⊗ z + w. (8)

Not surprisingly, this shows that flat-field estimation errors
affect all projections, and hence give rise to structured errors.

The linear approximation reaffirms that the variance of
the flat-field errors is inversely proportional to the flat-field
intensity and the number of flat-field measurements s. Thus,
if s is sufficiently large, the flat-field estimation errors play a
negligible role. However, a twofold reduction of the flat-field
error-to-noise ratio√

E[z2
i ]

E[w2
ij ]

=
1√

s exp(−eTi Aju)

requires a fourfold increase in the number of flat-field samples,
and hence it may require many samples to obtain a sufficiently
small flat-field error-to-noise ratio.

We now demonstrate the effect of flat-field estimation errors
by considering the behavior of reconstructions based on (6).
We will use a constant flat-field v = ω1 for ω > 0 to generate
a set of measurements according to the model (2) with r =
200 detector elements and p = 720 parallel beam projections
covering a full rotation. For the reconstruction we use the
flat-field ML estimate v̂f , as defined in (5), where only one
flat-field sample (s = 1) is acquired for each detector element
based on (4).

Our object u, shown in Fig. 1a, consists of three squares of
different sizes where the attenuation of the innermost square
is 0.5 cm−1, the enclosing square has attenuation 0.25 cm−1,
and the outermost square has no attenuation. The domain size
is 1 cm, and the reconstruction grid is 128×128 pixels. Fig. 1
shows three reconstructions based on (6) with different values
of the parameter ω. The effect of the flat-field error appears
as a ring in the reconstructions, and it is clear that the severity
of both noise and the ring in the reconstruction decreases as
the flat-field intensity is increased. In the next section, we
propose and investigate a new reconstruction model that takes
a statistical model of the flat-field into account.

The effect of a flat-field estimation error on the recon-
struction may also be analyzed by means of an analytic
reconstruction of the sinogram hθ(t) = δ(t − t0) where
t0 6= 0 is a given constant. This corresponds to a “line” in



2333-9403 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2017.2723246, IEEE
Transactions on Computational Imaging

4

(a) Phantom (b) ω = 103 photons

(c) ω = 104 photons (d) ω = 105 photons

Fig. 1. Phantom (a) and reconstructions (b), (c), and (d), based on (6) with
flat-field estimation errors. The display range for each of the images is [0, 0.6].

the sinogram. The function hθ(t) is a radial function (i.e.,
it does not depend on θ), but it is not the Radon transform
of a function since hθ(t) 6= hθ+π(−t). As a consequence,
the Fourier slice theorem does not hold. However, we may
still compute a reconstruction using filtered backprojection.
The reconstruction µ(x) is itself a radial function, and if we
let x = ρnφ where nφ = (cosφ, sinφ) such that |ρ| is the
distance to the origin, we obtain the expression [21]

µ(ρnφ) =
1

2

∫ π

−π

∫ ∞
−∞

Hθ(ζ)|ζ|e−2πε|ζ|ei2πζρn
T
φnθ dζ dθ

= π

∫ ∞
−∞

Hθ(ζ)|ζ|e−2πε|ζ|J0(2πζρ) dζ

= π

∫ ∞
0

[Hθ(ζ) +Hθ(−ζ)] e−2πεζζJ0(2πζρ) dζ

where J0 denotes the zeroth-order Bessel function of the first
kind, Hθ(ζ) = e−i2πζt0 is the Fourier transform of hθ(t), and
|ζ|e−2πε|ζ| is an apodizing filter with parameter ε > 0. Using
the Hankel transform pair (20) in [22, p. 9], we obtain the
closed-form expression

µ̃(ρ) =
1

4π

(
σ

(σ2 + ρ2)3/2
+

σ̄

(σ̄2 + ρ2)3/2

)
(9)

where σ = ε + it0 and µ̃(ρ) = µ(ρnφ) . Fig. 2 shows three
examples of what this function may look like. It is clear from
the figure that a systematic error in the sinogram in the form
of a “line” will appear as spikes in the radial reconstruction. In
particular, the reconstruction will have two “rings” of opposite
sign near ρ = t0, corresponding to the positive and negative
peaks in the profile µ̃(ρ). The extrema of µ̃(ρ) (i.e., the spike
magnitudes) depend on both t0 and ε. The dotted curves in the

−2 −1 0 1 2
−5

0

5

10

ρ

µ̃
(ρ
)

t0 = 0.5 t0 = 1.0 t0 = 1.5

Fig. 2. Examples of radial profile of reconstruction of hθ(t) for three different
values of t0 (0.5, 1.0, and 1.5) and ε = 0.05.

figure provide an envelope of the extrema for ε = 0.05, and it
shows that the magnitude of a spike is large when |t0| is small
and vice versa. Our analysis of the extrema of µ̃(ρ), which is
included in Appendix A, shows that they are approximately
inversely proportional to

√
ε3|t0| when |t0| � ε. Moreover,

µ̃(ρ) may have a significant offset near ρ = 0, as is the case
for the example with t0 = 0.5 in Fig. 2.

D. Including Prior Information

If the prior probability density P(u) is assumed to be
known, a so-called maximum a posteriori (MAP) estimate can
be expressed as

ûmap = argmin
u
{− log P(u | y, v)} (10)

where, according to Bayes’ rule, the posterior probability
density P(u|y, v) satisfies

P(u | y, v) ∝ P(y | u, v)P(u). (11)

Again, since v is generally unknown, an approximate MAP
(AMAP) estimate can be obtained by maximizing an approx-
imation of the posterior distribution, i.e.,

ûamap = argmin
u
{− log P(u | y, v̂f)} . (12)

We will restrict our attention to priors of the form

P(u | γ) ∝ e−γφ(u) (13)

where φ(u) is a convex function and γ > 0 is a hyperparam-
eter. With this prior, the AMAP estimation problem can be
expressed as

ûamap = argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu+ γφ(u)
}

(14)

which is a convex optimization problem. Alternatively, using
the quadratic approximation (7) in place of the log-likelihood
function, we obtain the regularized weighted least-squares
problem

ûwls = argmin
u

{
1

2
‖diag(y)1/2(Au− b)‖22 + γφ(u)

}
(15)

as an approximation to the AMAP estimation problem.
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III. JOINT RECONSTRUCTION APPROACH

We now turn to the main contribution of this paper, namely
a model for jointly estimating the flat-field v as well as the
absorption image u. Recall from the example in section
II-C that the approximate ML model (6) may lead to ring
artifacts. As will be evident from our numerical experiments in
section V, the approximate MAP model (14) suffers the same
drawback. To mitigate this, we consider joint MAP estimation
of u and v. This approach is motivated by the fact that
the measurements Y contain information about both u and
v. Indeed, given u, an ML estimate of v can be computed as

v̂y(u) = argmin
v
{− log P(Y | u, v)} (16)

= diag

 p∑
j=1

exp(−Aju)

−1

Y 1. (17)

A. MAP Estimation Problem

With the model assumptions described in II-A and given a
flat-field prior P(v|α, β), the joint posterior distribution of the
unknown parameters u and v can be expressed as

P(u, v | Y, F ) ∝ P(Y, F | u, v)P(u | γ)P(v | α, β)

where P(Y, F |u, v) = P(Y |u, v)P(F |v), and α ∈ Rr and
β ∈ Rr are hyperparameters associated with the flat-field prior.
Here we will assume that vi and vj , i 6= j are independent,
and the flat-field prior is vi|αi, βi ∼ Gamma(αi, βi) for i =
1, . . . , r, i.e.,

P(vi | αi, βi) =
βαii

Γ(αi)
vαi−1
i exp(−βivi).

The Gamma prior is chosen because of computational conve-
nience; it is the so-called conjugate prior for the Poisson likeli-
hood function, and as a consequence, the posterior distribution
of v given u is itself a Gamma distribution. For the Gamma
distribution, the hyperparameter αi is commonly referred to as
the shape, and βi is referred to as the rate. The corresponding
MAP estimation problem can be expressed as

(û, v̂) = argmin
(u,v)

{− log P(u, v | Y, F )} (18)

= argmin
(u,v)

{J(u, v) + γφ(u)}

where

J(u, v) = vT d(u) + yTAu− cT log(v) (19)

and

c = F1 + Y 1 + α− 1, d(u) = s1 +

p∑
j=1

exp(−Aju) + β.

(20)

The function J(u, v) is convex in u given v and vice versa,
but it is not jointly convex in u and v. However, by setting the
gradient of J(u, v) with respect to v equal to zero, we obtain
the first-order optimality condition v̂(u) = diag(d(u))−1c.

This allows us to eliminate v from the estimation problem
(18), i.e.,

J(u, v̂(u)) ∝ yTAu+ cT log(d(u)),

which is a convex function of u. Thus, the problem (18) is
equivalent to the following convex reconstruction model

û = argmin
u

{
yTAu+ cT log(d(u)) + γφ(u)

}
(21)

with the flat-field estimate v̂ given by

v̂ = diag(d(û))−1c. (22)

We note that v̂ has an interesting interpretation: each element
of v̂ can be expressed as a convex combination of three
independent estimates, i.e.,

v̂ = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β) (23)

where θ1, θ2, θ3 ∈ Rr+, θ1 + θ2 + θ3 = 1, are parameters that
depend on both data and û, α, and β. The ML estimate v̂f ,
defined in (5), is based on the flat-field measurements F , the
estimate v̂y(û) is based on the measurements Y and defined in
(16), and the estimate v̂pr(α, β) = diag(β)−1(α−1) is based
on the flat-field prior; see Appendix B for further details on
this interpretation.

B. Choosing The Hyperparameters

The estimation problem (21) depends on the flat-field hyper-
parameters α and β. We now discuss different ways to choose
these hyperparameters.

1) Uniform Positive Prior: The simplest prior is perhaps
the uniform positive (UP) prior which is obtained by setting
αi = 1 and βi = 0 for i = 1, . . . , r. In the present case, this
corresponds to simply omitting the prior P(v|α, β) from the
model, and hence the flat-field estimates v̂(u) become convex
combinations of only two estimates instead of three. This is
an improper prior since it does not integrate to one.

2) Jeffreys Prior: The Jeffreys prior (JP) for the Poisson
distribution is p(vi|αi, βi) ∝ 1/

√
vi which is obtained by

letting αi = 0.5 and βi = 0. This is also an improper prior.
3) Type-II ML Estimation: The flat-field measurements can

be used to estimate the hyperparameters by maximizing the
marginal probability of fi1, . . . , fis given the hyperparameters
αi and βi, i.e.,

(α̂i, β̂i) = argmin
(αi,βi)

{− log P(fi1, . . . , fis | αi, βi)} . (24)

This is known as type-II ML estimation or empirical Bayes
estimation [23]. As shown in Appendix C, this approach leads
to the AMAP model, i.e., a zero-variance prior with mean v̂f .

4) Flat-field Emphasizing Prior: Recall that the flat-field
estimate v̂(u) can be expressed as convex combinations of
three estimates. Specifically,

v̂i(u) =
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

αi − 1

βi
(25)

where τi(u) =
∑p
j=1 exp(−eTi Aju). If we set the mode of

the Gamma prior (i.e., (αi − 1)/βi) equal to the flat-field



2333-9403 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2017.2723246, IEEE
Transactions on Computational Imaging

6

0 5 10 15 20 25
0

0.1

0.2

0.3

vi

P
(v
i
|α
i
,β
i
)

βi = 0.1

βi = 1.0

βi = 5.0

Fig. 3. Gamma distributions with hyperparameters βi and αi = 1+(v̂f)iβi
for (v̂f)i = 10 and βi ∈ {0.1, 1.0, 5.0}.

ML estimate (v̂f)i by letting αi = 1 + βi(v̂f)i, we obtain
the estimate

v̂i(u) =
s+ βi
di(u)

(v̂f)i +
τi(u)

di(u)
(v̂y)i (26)

which is a convex combination of two estimates. It is easy
to verify that v̂i(u) → (v̂f)i as β → ∞, and with βi = 0,
the estimate v̂i(u) is equivalent to the estimate obtained with
the UP prior. Thus, choosing βi > 0 and αi = 1 + βi(v̂f)i
allows us to emphasize the flat-field ML estimate (v̂f)i. This
is consistent with the fact that the parameter βi is the rate
parameter associated with the Gamma distribution: the larger
the rate, the more concentrated the distibution is around its
mode. This is illustrated in Fig. 3. We call this corresponding
prior the flat-field emphasizing (FE) prior.

C. Quadratic Approximation

A quadratic approximation of the first two terms in (21) can
be derived by means of a second-order Taylor expansion with
respect to Au. Substituting y for (I⊗diag(v̂(u))) exp(−Au),
we obtain the following approximate MAP estimation problem

ûswls = argmin
u

{
1

2
‖Au− b‖2

Σ̂−1
b

+ γφ(u)

}
(27)

where the covariance matrix Σ̂b is defined as

Σ̂b = (11T )⊗ diag(sv̂f + α− 1)−1 + diag(y)−1. (28)

This is also the covariance matrix associated with b in the
linear approximation (8). Note that the weighted least-squares
data fidelity term takes the systematic errors induced by flat-
field estimation errors into account without explicitly modeling
the flat-field, and hence we label this a regularized stripe-
weighted least-squares (SWLS) problem. The model depends
on the hyperparameter vector α, which appears in the covari-
ance matrix, but β does not appear in the model.

IV. IMPLEMENTATION

The MAP estimation problems (14) and (21) as well as
the WLS (15) and SWLS (27) quadratic approximations are
all convex problems that can be solved with a wide range
of numerical optimization methods. Here we will focus on
simple first-order methods which are suitable for large-scale
problems.

A. Attenuation Priors

Before we describe our implementation of the different re-
construction methods, we briefly discuss two attenuation priors
of the form (13), namely the nonnegativity prior (correspond-
ing to nonnegativity constraints ui ≥ 0), and a combination of
the nonnegativity prior and total variation (TV) regularization
[24]. Both of these priors can be combined with the existing
AMAP model (14), the proposed model (21), the WLS model
(15) and the SWLS model (27).

1) Nonnegativity: The nonnegativity constraints can be
expressed as φ(u) = I+(u) where I+(u) denotes the indicator
function of the nonnegative orthant, i.e., I+(u) = 0 if and only
if u is a nonnegative vector, and otherwise I+(u) =∞.

2) Nonnegativity and TV: The combination of nonnegativ-
ity constraints and TV may be expressed as

φ(u) = I+(u) + TVδ(u)

where TVδ(u) =
∑n
i=1 ξδ(‖Diu‖2) is a differentiable TV-

approximation, ξδ denotes the Huber-norm

ξδ(t) =

{
(t)2/(2δ) |t| ≤ δ
|t| − δ/2 otherwise

with parameter δ, and Diu is a finite-difference approximation
of the gradient at pixel i. We will use a pixel basis correspond-
ing to an M ×N grid (i.e., n = MN ). Specifically, we define

Di =

[
eTi (IN ⊗ D̄M )
eTi (D̄N ⊗ IM )

]
where IM and IN are identity matrices, and D̄M and D̄N are
square difference matrices of order M and N , respectively,
and of the form 

1 −1
. . . . . .

1 −1
0


where the last row is zero, corresponding to Neumann bound-
ary conditions.

The function TVδ(u) has a Lipschitz continuous gradient
with constant Ltv(δ) = ‖D‖22/δ where D =

[
DT

1 · · ·DT
n

]T
.

B. Reconstruction Models

We now consider five different reconstruction models of
the form

minimize Ji(u) + γφ(u), i = 1, . . . , 5, (29)

where Ji(u) is based on either (10), (14), (21), (15) or (27).
1) Baseline and AMAP Estimation: The reconstruction

model (10) requires the true flat-field v which is not available
in practice. However, the model may be used to compute
a baseline reconstruction in simulation studies. The baseline
reconstruction problem corresponds to J1(u) = J(u, v) where
the true flat-field v is assumed to be known. If we replace
v by v̂f , we obtain the AMAP model (14) with objective
J2(u) = J(u, v̂f).
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To solve the reconstruction problem (29) using a first-order
method, we need the gradient of J(u, v) with respect to u,
i.e.,

∇uJ(u, v) = AT (y − ŷ(u, v)) (30)

where ŷ(u, v) = (I ⊗ diag(v)) exp(−Au). It is easy to verify
that the gradient ∇uJ(u, v) is Lipschitz continuous on the
nonnegative orthant since the norm of the Hessian

∇2
uJ(u, v) = ATdiag(ŷ(u, v))A

is bounded for u ≥ 0 and with v fixed. We will use
the Lipschitz constants L1 = maxi{vi}‖A‖22 and L2 =
maxi{(v̂f)i}‖A‖22.

2) Joint MAP Estimation: The MAP estimation problem
(21) is a special case of (29) if we let J3(u) = J(u, v̂(u)).
The gradient of J3(u) is

∇J3(u) = AT y +Dd(u)T v̂(u) (31)

= AT (y − ŷ(u, v̂(u)))

where Dd(u) = −
∑p
j=1 diag(exp(−Aju))Aj denotes the

Jacobian matrix of d(u). Comparing with (30), we see that
the only difference is that the residual y− ŷ(u, v̂(u)) is based
on the flat-field estimate v̂(u) instead of the true flat-field v
or the ML estimate v̂f .

To derive the Hessian of J3(u), note that

cT log(d(u)) =
r∑
i=1

ci log(di(u))

where di(u) = s +
∑p
j=1 exp(−eTi Aju) + βi. This implies

that the Hessian can be expressed as
r∑
i=1

ci

(
∇2di(u)

di(u)
− ∇di(u)∇di(u)T

di(u)2

)
.

Now let Πi = I ⊗ eTi such that Πiy = Y T ei corresponds
to the ith row of Y , and define a permutation matrix Π =
[ΠT

1 · · · ΠT
r ]T . This allows us to express the Hessian∇2J3(u)

as

∇2J3(u) = ATΠTblkdiag(B1(u), . . . , Br(u))ΠA (32)

where Bi(u) = diag(Πiŷ)− 1
ci

Πiŷŷ
TΠT

i , and where ŷ is used
as shorthand for ŷ(u, v̂(u)). (We remark that v̂(u) depends
on both α and β, and consequently, so does the Hessian
∇2J3(u).) It follows that

‖∇2J3(u)‖2 ≤ ‖ATdiag(y)A‖2

which implies that ∇J3(u) is Lipschitz continuous with con-
stant L3 = ‖ATdiag(y)A‖2.

3) WLS Estimation: The quadratic approximation (15) cor-
responds to (29) with J4(u) = 1

2‖Au − b‖2
Σ̂−1

b

and Σ̂b =

diag(y)−1. The gradient of J4(u) is

∇J4(u) = ATΣ−1
b (Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b A‖2.

4) Regularized SWLS: The quadratic approximation (27)
corresponds to (29) with J5(u) = 1

2‖Au− b‖
2
Σ̂−1

b

and

Σ̂b = ΠT
[
diag(Πy)−1 + diag(sv̂f + α− 1)−1 ⊗ (11T )

]
Π.

Thus, Σ̂b is a symmetric permutation of a block-diagonal
matrix with diagonal-plus-rank-one blocks, and hence matrix-
vector products with Σ̂−1

b can be efficiently evaluated using
the Woodbury identity, i.e., Σ̂−1

b = ΠTblkdiag(S1, . . . , Sr)Π
where

Si = diag(Πiy)− 1

s(v̂f)i + eTi Y 1 + αi − 1
Πiyy

TΠT
i . (33)

This allows us to evaluate the gradient as

∇J5(u) = ATΣ−1
b (Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b A‖2.

It is instructive to compare the SWLS model to the WLS
model considered in [16]. This model implicitly includes the
flat-fields using the following objective function

J6(u, z) =
1

2
‖diag(y)1/2(Au− b+ 1⊗ z)‖22 +

λ

2
‖z‖22 (34)

where z ∈ Rr is an auxiliary variable that can be thought of
as the relative flat-field error (cf. the analysis in Section II-C).
Taking the gradient with respect to z and setting it equal to
zero yields z = diag(Y 1 + λ1)−1(1T ⊗ I)diag(y)(b − Au),
and using this expression in (34) yields

J6(u) =
1

2
‖Au− b‖2

Σ̂−1 (35)

where Σ̂−1 = ΠTblkdiag(S̄1, . . . , S̄r)Π and

S̄i = diag(Πiy)− 1

eTi Y 1 + λ
Πiyy

TΠT
i . (36)

The blocks S̄i clearly resemble the blocks Si from the SWLS
model in (33): the only difference is the scalar weight in
front of the rank-1 term in each of the r blocks. In particular,
notice that the weights in the SWLS model include information
derived from all measurements as well as the flat-field prior.
Moreover, the parameter λ in (36) plays a similar role as the
flat-field hyperparameters α in (33), but the SWLS model
is more general and flexible because it allows the use of a
different hyperparameter αi for each of the r blocks.

C. Algorithm

The functions J1(u), . . . , J5(u) are all differentiable with
Lipschitz continuous gradients on the nonnegative orthant, and
hence we can apply a proximal gradient method which is
suitable for minimizing problems of the form

minimize g(u) + h(u).

Here g : Rn → R is convex with a Lipschitz continuous
gradient with Lipschitz constant L, h : Rn → R is convex,
and the prox-operator

proxth(ū) = argmin
u

{
th(u) +

1

2
‖u− ū‖22

}
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is assumed to be cheap to evaluate. We will define g(u) =
Ji(u) + γTVδ(u) and h(u) = I+(u), and hence the Lipschitz
constant is given by L = Li+γLtv(δ). Given a starting point
u(0) and a fixed number of iterations K, the algorithm can be
summarized as

u(k) = proxth(u(k−1) − t∇g(u(k−1))), k = 1, 2, . . . ,K

where t ∈ (0, 2/L) is the step size and proxth(ū) =
max(0, ū) is the projection onto the nonnegative orthant.
With this step size, the method is a descent method. The
Lipschitz constant L can be estimated without an explicit
representation of A or D by means of the power iteration
algorithm. Our MATLAB implementation of the method is
available for download at https://github.com/hariagr/R2CT.

V. NUMERICAL EXPERIMENTS

A. Simulation Study

To evaluate the proposed reconstruction models, we con-
ducted a series of experiments in MATLAB based on sim-
ulated data. In these experiments, we used a parallel beam
geometry with p = 720 equidistant projection angles covering
half a rotation, and a 2 cm wide photon counting detector
array with r = 512 detector elements. To model a non-
uniform detection efficiency, the elements of the flat-field
vector v were drawn from a Poisson distribution with mean
I0. We used s = 5 measurements of the flat-field which
were generated according to (4), and the measurements Y
were generated according to (2) using a 2N × 2N pixel
discretization of a 2D phantom defined on a 4 cm2 square.
To avoid inverse crimes, we computed our reconstructions on
an N × N (N = 512) pixel grid with a circular mask. The
value of the TV-smoothing parameter δ was 0.01 cm−1 in all
experiments with the TV-prior. We used as step size t = 1.8/L,
and we used the ASTRA Toolbox [25] (version 1.7.1beta)
to compute filtered backprojection (FBP) reconstructions and
to implicitly compute products with A and AT on a GPU.
We generated the phantoms using the AIR Tools package [26]
(version 1.3), and we used the method outlined in Section IV-C
to numerically solve the reconstruction problems. As a remark,
we note that the ASTRA GPU code for backprojection (i.e.,
multiplication by AT ) is not an exact adjoint of the forward
operator (multiplication by A), and this may introduce small
errors in the gradient computations. However, it is significantly
faster than matched implementations, and we did not see any
noticeable differences in reconstruction quality when using the
exact adjoint.

As initial guess we used a vector of zeros, and we used a
fixed number of iterations as stopping criteria (500 iterations
for reconstructions without the TV-prior and 1,500 iterations
for reconstructions with the TV-prior). We determine the
parameter γ for the TV-prior based on the subjective visualiza-
tion. As flat-field prior P(v|α, β) we used αi = 1+βi(v̂f)i and
βi ≥ 0 (corresponding to the UP flat-field prior if βi = 0 and
the FE prior if βi > 0), and for the attenuation prior P(u|γ)
we used either nonnegativity or total variation combined with
nonnegativity. Note that SWLS only depends on α, but since

we also use αi = 1 + βi(v̂f)i for SWLS, we report the value
of β in the experiments.

To quantitatively compare the quality of reconstructions, we
report the relative attenuation error (RAE)

erel
u (û) = 100 · ‖û− u‖2

‖u‖2
,

the relative flat-field error (RFE)

erel
v (v̂) = 100 · ‖v̂ − v‖2

‖v‖2
,

the structural similarity (SSIM) index1 [27], and a “ring ratio”
(RR), defined as

‖ψv(v̂(û))‖F /‖ψv(v̂f)‖F

with ψv(v̂) defined as

ψv(v̂) = FBP(diag(v)−1(v̂ − v)1T ) (37)

and where FBP denotes the filtered backprojection reconstruc-
tion method. In other words, ψv(v̂) is the FBP reconstruction
of the sinogram stripes due to flat-field estimation errors, and
hence the norm ‖ψv(v̂)‖F quantifies how severely the flat-field
estimation errors affect the reconstruction. Thus, the RR can be
viewed as an indication of the expected ring artifact reduction
if we were to use the flat-field estimate v̂(û) instead of the
ML estimate v̂f (smaller is better) to compute a reconstruction.
Recall that all but the JMAP reconstruction model are based
on the ML estimate v̂f , so for the other models, the RFE and
the RR simply reflect what we obtain if we were to use the
reconstruction û to compute a new flat-field estimate v̂(û),
using (22). We used α = 1 and β = 0 to compute v̂(û) for
all but the JMAP and SWLS reconstruction models.

1) Low Intensity: In our first experiment, we used a phan-
tom based on the “grains” phantom from AIR Tools, shown
in the upper left corner of Fig. 4. We applied a circular
mask of radius 0.8 cm to obtain a phantom that is fully
contained by the reconstruction grid. We used I0 = 500 in
this experiment, corresponding to approximately 500 photons
per detector element per projection. As a result, the SNR is
relatively low. Estimates based on low SNR measurements
generally have a high variance, and hence a good model and
strong priors are of paramount importance. The reconstructions
shown in Fig. 4 demonstrate this. The baseline reconstructions
were computed using the true flat-field, and hence they are
“inverse crime” reconstructions that serve only as a baseline
for comparison. The two baseline MAP reconstructions (with
and without the TV prior) are based on the model (10).
Using the flat-field estimate v̂f instead of the true flat-field,
we obtained the FBP and AMAP reconstructions. It is clear
from these reconstructions that the flat-field estimation errors
introduce severe ring artifacts, even in the presence of a strong
prior such as the TV-prior. The ring artifacts are especially
severe near the center of the image (cf. Section II-C).

1We used the MATLAB ssim function with the radius parameter equal to
0.2 for reconstructions without the TV-prior and equal to 2.0 for reconstruc-
tions with the TV-prior.
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Fig. 4. Phantom and reconstructions based on simulated low-intensity measurements. The display range for the images is 0 to 1.2 cm−1. The reconstructions
with the TV-prior were computed with γ = 3. The insets are blow-ups of the reconstructions at the isocenter. The number of iterations was 500 for
reconstructions without TV prior and 1,500 for reconstructions with TV prior.

Model Without TV (full domain, 2×2 cm) Without TV (disc, radius 0.8 cm) TV γ = 3 (disc, radius 0.8 cm)
RAE SSIM RFE RR RAE SSIM RFE RR RAE SSIM RFE RR

Baseline FBP 71.9 0.62 0.2 0.03 65.7 0.77 0.2 0.03 - - - -
FBP 101.2 0.55 3.5 0.66 94.7 0.70 3.6 0.66 - - - -
P-FBP 73.1 0.62 1.8 0.20 66.7 0.77 1.6 0.19 - - - -
Baseline MAP 58.7 0.79 0.3 0.04 58.4 0.80 0.2 0.04 6.1 0.93 0.3 0.06
AMAP 77.3 0.72 2.8 0.50 76.9 0.74 2.9 0.52 15.2 0.71 1.7 0.19
WLS 76.9 0.72 2.8 0.50 76.6 0.74 2.9 0.52 15.2 0.71 1.7 0.19
JMAP (β = 0) 63.8 0.72 5.4 0.25 58.1 0.80 2.7 0.12 8.2 0.92 0.9 0.09
SWLS (β = 0) 63.9 0.72 5.5 0.26 58.0 0.80 2.7 0.12 8.3 0.92 1.0 0.10
JMAP (β = 10) 61.8 0.74 3.1 0.20 58.4 0.80 1.5 0.15 7.6 0.92 0.7 0.09
SWLS (β = 10) 61.8 0.74 3.2 0.20 58.3 0.80 1.4 0.15 7.7 0.92 0.8 0.09
JMAP (β = 50) 62.0 0.75 2.3 0.30 60.3 0.79 2.0 0.31 7.6 0.91 1.2 0.17
SWLS (β = 50) 61.9 0.75 2.3 0.30 60.2 0.79 2.0 0.31 7.7 0.91 1.3 0.17

TABLE I
ERROR MEASURES FOR RECONSTRUCTIONS BASED ON SIMULATED LOW-INTENSITY MEASUREMENTS.

The preprocessed FBP (P-FBP) reconstruction is the result
of applying the combined wavelet and FFT filtering pre-
processing method2 by Münch et al. [12] to the sinogram,
followed by FBP. This removes stripes from the sinogram,
and although there are still some noticeable ring artifacts
in the reconstruction, the preprocessing step clearly reduces
the severity of the artifacts. However, the preprocessing step
involves several parameters that must be carefully tuned, and
it does not directly allow us to use the AMAP or MAP-based
reconstruction models for reconstruction.

The proposed models are quite effective at reducing ring
artifacts, as can be seen from the JMAP reconstructions as
well as the SWLS reconstruction. Notice that both the SWLS

2We used a damping factor of 0.9 and a Daubechies 5 wavelet with a
three-level decomposition.

(β = 0) reconstruction and the JMAP (β = 0) reconstruction
without the TV prior do not involve any parameters.

For the experiments without the TV-prior, Table I shows the
error measures based on both the full reconstruction domain
and based on a disc of radius 0.8 cm (corresponding to
the support of the phantom). The latter approach ignores
noise and ring artifacts outside the phantom, and hence this
gives a more practical picture of the performance. For the
reconstructions with a TV-prior, we report our results based on
a disc of radius 0.8 cm. Notice that in all cases, we obtain the
best reconstruction (in terms of both RAE and SSIM) using
either the JMAP reconstruction model or the SWLS model.
Moreover, these reconstructions have RAEs that are similar to
those of the baseline MAP reconstructions. We also see that
RRs and the RAEs for the JMAP reconstructions appear to be
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Fig. 5. Results of semi-convergence and initialization study. Reconstructions are computed with a UP prior β = 0.

correlated, but interestingly, the RFEs do not seem to agree
with the RAEs.

Despite the fact that the P-FBP reconstruction is worse
than the JMAP reconstructions, it is interesting to note that
it may be used to compute an improved flat-field estimate.
In our experiment, the ML estimate v̂f had a relative error
of 4.8%, but the flat-field estimate computed based on the P-
FBP reconstruction had a relative error of only around 1.8%.
However, using the TV-prior, the JMAP and SWLS model still
produced the best flat-field estimate of all the models.

Finally, we remark that the AMAP and WLS reconstructions
may be improved slightly by increasing the parameter γ.
Using γ = 10, we obtained AMAP and WLS reconstructions
with a relative error of around 10%, and although these
reconstructions did not have noticeable ring artifacts, they
contained an increased amount of undesirable TV-artifacts.
On the other hand, the JMAP and SWLS reconstructions
obtained with γ = 3 only have a limited amount of ring
artifacts and TV artifacts, and hence we conclude that the
proposed model allows us to reduce ring artifacts using a
smaller regularization parameter γ than with the AMAP or
WLS models, thus limiting unnecessary TV-induced artifacts.

2) Semi-convergence and Initialization: We now investigate
the role of regularization and its influence on the reconstruc-
tion. Recall that X-ray tomographic imaging is an ill-posed
problem where a small amount of noise in the measurements
may results in a large change in the reconstruction if it is not
regularized by a suitable prior. Thus, without regularization,
intermediate iterates sometimes provide better reconstructions
than iterates close to convergence. This behavior is known as
semi-convergence and depends on the reconstruction method
as well as initialization. Semi-convergence behavior often
indicates that the reconstruction is under-regularized, and
hence a solution to our convex reconstruction model may be a
poor reconstruction. In practice it is difficult to rely on semi-
convergence as the true solution is unknown.

We use the same experimental setup as in the previous
experiment. Fig. 5 shows RAE and RR as a function of the
number of iterations, with and without the TV-prior (i.e., regu-
larization). The semi-convergence behavior is evident without
the TV-prior, and not surprisingly, the baseline reconstruction
obtains the lowest RAE at the semi-convergence point after
approximately 50 iterations. After the semi-convergence point,
noise start to dominate the reconstruction and the RAE starts
to increase monotonically. Comparing the AMAP and JMAP
models, we see that the AMAP model has a lower RAE at
the semi-convergence point, but it converges to a higher RAE.
Taking the definition of the AMAP and JMAP estimators into
account, we can conclude that the JMAP model still converges
to a better reconstruction than the AMAP model. Fig. 5 also
shows the RR error measure, and while the AMAP model
exhibits semi-convergence both with respect to the RAE and
the RR, the JMAP model appears to monotonically reduce the
RR despite semi-convergence with respect to the RAE.

The dashed curves in Fig. 5 show the results of the same
experiment, but using the P-FBP reconstruction of u as ini-
tialization (the baseline MAP was initialized with the baseline
FBP reconstruction). The FBP reconstruction has a smaller
RAE than the zero-initialization, but FBP reconstructions
may be quite noisy when the SNR is low. Consequently,
this initialization may not lead to faster convergence without
regularization, as can be seen in Fig 5. The figure also shows
that the AMAP reconstruction method still exhibits a mild
degree of semi-convergence when using the TV-prior, but the
baseline method and the JMAP method appear to reduce the
RAE and the RR monotonically. Moreover, it is clear that
the FBP-initialization helps when combined with the TV-
prior. Finally, using the 50th AMAP iterate as initialization for
JMAP (corresponding to the semi-convergence point for the
RR), we obtained a significant improvement in the number of
iterations when compared to initialization with zeros.
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Fig. 6. Pixelwise bias and standard deviation based on 200 realizations of all measurements. The display range for the bias images is −0.1 to 0.1 cm−1, and
the display range for the standard deviation images is 0 to 0.06 cm−1. The reconstructions are computed with TV-prior with γ = 3. The insets are blow-ups
of the reconstructions at the isocenter.

3) Noise Analysis: To investigate the noise properties of the
proposed reconstruction model, we generated 200 realizations
of all measurements based on the grains phantom (see Fig. 4)
and with I0 = 500. We then computed pixelwise bias (the
difference between the mean of the reconstructions and the
phantom) and standard deviation for reconstructions based on
the baseline MAP, the AMAP, and the JMAP reconstruction
models. All reconstructions were computed with the TV-prior
(γ = 3) and 1,500 iterations. The results are shown in
Fig. 6. Generally speaking, the AMAP model is less biased
than the JMAP model. For small values of β, the JMAP
bias is somewhat large in comparison to the AMAP bias,
especially near the boundary of the object and at the isocenter.
However, the JMAP bias decreases when the parameter β is
increased, but at the cost of increasing the standard deviation.
This is consistent with the fundamental trade-off between
bias and variance in statistical learning. More importantly, the
standard deviation is significantly lower for the JMAP model
in comparison to the AMAP model, and it is even comparable
to that of the baseline MAP model when β is small. Notice
that in all instances, the standard deviation is particularly large
near the interfaces of the grains where the intensity jumps.

Recall from the previous experiment that the flat-field
estimate may converge very slowly. As a consequence, the
bias component that is induced by flat-field estimation errors
decreases slowly as we increase the number of iterations.
The results therefore depend on the stopping criteria (i.e., the
number of iterations). Finally we note that the noise results for
the SWLS model were very similar to those of the the JMAP
model, and hence we have chosen to omit the SWLS results
for the sake of brevity.

4) Flat-field Regularization: Our next experiment demon-
strates a potential shortcoming of the proposed model when
using the UP flat-field prior for reconstruction. We used
the Shepp–Logan phantom for the experiment, but unlike in

the previous experiments, we generated the measurements
by evaluating the line integrals analytically. The intensity
parameter was I0 = 105. The reconstruction based on (14),
the leftmost reconstruction in Fig. 7, has some low-level ring
artifacts. JMAP with the FE prior and β = 0 leads to the
reconstruction in the middle of Fig. 7. Somewhat surprisingly,
while the low-level rings are mostly gone, the reconstruction
has a few wide and very noticeable rings. These rings arise
because of the structure of the flat-field estimation errors
which can be seen by looking at the reconstruction ψv(v̂),
defined in (37) and shown in Fig. 7. Several high-intensity
rings appear clearly, and these can be linked to large flat-field
estimation errors associated with a small number of detector
elements. In particular, the detector elements corresponding
to rays that intersect the outer ellipsoidal shell of the Shepp–
Logan phantom tangentially give rise to large estimation
errors. We remark that we have observed experimentally that
these artifacts seem to be exacerbated by the fact that the two
outer Shepp–Logan ellipses are centered at the isocenter.

Now recall that the flat-field estimate v̂(u) can be expressed
as (23), i.e., a convex combination of independent estimates.
Thus, the weights θ indicate the emphasis of the different flat-
field estimates. The plots in Fig. 7 show these weights for two
different priors parameterized by β. We see that when β = 0
(corresponding to the UP flat-field prior), the flat-field estimate
is based almost entirely on v̂y, and the estimates v̂f and v̂pr

both receive negligible (but nonzero) weights. Inspecting the
corresponding flat-field estimate (the bottom plot in Fig. 7)
reveals that for β = 0, the JMAP estimate is worse than the
ML estimate v̂f . This indicates over-fitting. To mitigate this,
we can emphasize the flat-field ML estimate v̂f by using the
FE prior (i.e., α = 1 +β(v̂f)), as described in III-B. Doing so
effectively removes the major rings that were present with the
FE prior with β = 0, as shown in the rightmost reconstruction
in Fig. 7. Moreover, the rightmost plot in the figure confirms
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RR 0.03 0.60 0.96 0.31

Fig. 7. Reconstructions of the Shepp–Logan phantom after 1,000 iterations,
without the TV-prior on u. The display range for the reconstruction images is
0 to 0.4 cm−1, and 0 to 0.04 for the ring images ψv(v̂). The first two plots
show the values of θ1, θ2, θ3, as defined in (23), for β = 0 and β = 50. The
third plot shows the element-wise relative error with respect to true flat-field
v, defined as ev(v̂) = 100 ·diag(v)−1(v̂−v), for the ML flat-field estimate
v̂f and two JMAP flat-field estimates. The table lists the RAE and RR error
measures.

that the resulting flat-field estimate depends less on v̂y than
with the FE prior with β = 0. The FBP reconstructions of
the flat-field error, shown below the reconstructions in Fig. 7,
clearly show a reduction in ring artifacts compared to the basic
AMAP and JMAP reconstructions.

B. Real Data Study

We now evaluate the performance of the proposed model
based on real measurement data provided by the Advanced
Photon Source (APS) facility operated by Argonne National

Laboratory (USA). The data set provides tomographic mea-
surements of a sample of glass beads with some dried potas-
sium from p = 900 projection angles between 0◦ and 180◦

in a parallel beam geometry and with a 600 × 960 pixel
detector array. In this experiment, we will consider only
a 2D reconstruction of the center slice (slice 300) so we
take r = 960. The energy of the X-ray source was 33.27
keV, and the photon flux per pixel in each projection was
approximately 1200 photons/s. With an exposure time of only
6 ms, that amounts to pixelwise photon counts in the range 0-
20 per projection. Out of a total of 20 flat-field measurements
collected before and after the experiment, 8 appear to be
corrupted, so we used s = 12 flat-field measurements for our
reconstructions. Moreover, we used a square grid with side
length 0.3053 cm and 768×768 pixels for the reconstructions.
Our reconstructions are shown in the Fig. 8.

Without the TV-prior on the attenuation image, the re-
constructions are quite noisy because of the low SNR. The
FBP reconstruction and the AMAP reconstruction both have
ring artifacts which heavily distort the reconstruction. The P-
FBP reconstruction does not have noticeable ring artifacts,
but the reconstruction is quite noisy. Thus, to reduce noise,
we smoothed the FBP and P-FBP reconstructions using a
Gaussian filter with standard deviation 1.0, and although this
help, the resulting images are still somewhat noisy compared
to the other reconstructions. The JMAP reconstruction with
the UP prior (β = 0) has no noticeable ring artifacts, but it
has a significant amount of noise. This is especially noticeable
near the circular boundary of the object, and it may be because
of flat-field estimation errors. Indeed, using the FE prior with
β = 200 yields a reconstruction that is somewhat improved
near the outer circles. Notice that the JMAP reconstructions
do not have such a “hole” in the middle like the FBP, P-FBP,
and AMAP reconstruction. Finally, including the TV-prior on
u results in the AMAP-TV and JMAP-TV reconstructions.
These results verify the applicability of proposed model for
tomographic reconstruction based on low-intensity measure-
ments.

VI. CONCLUSION

In X-ray computed tomography, the X-ray source inten-
sity is typically estimated based on a number of flat-field
measurements. This estimation introduces unavoidable errors
in popular reconstruction models such as AMAP, WLS, and
FBP, and these errors lead to systematic reconstruction errors
in the form of ring artifacts. By investigating the filtered
backprojection of a line in the sinogram, we have demonstrated
that such systematic errors introduce structural changes in the
reconstruction in the form of a ring. Based on the statistics of
X-ray measurements, our analysis shows an inverse relation-
ship between severity of ring artifacts and the source inten-
sity. Therefore, these systematic errors can have a significant
impact on the reconstruction quality of dose-constrained and
time-constrained problems. To mitigate this problem, we have
introduced a convex reconstruction model (JMAP) that jointly
estimates the attenuation image and the flat-field. We have also
introduced a quadratic approximation of the JMAP model, the



2333-9403 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2017.2723246, IEEE
Transactions on Computational Imaging

13

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)

FBP P-FBP AMAP JMAP (β = 0) JMAP (β = 200)

FBP + smoothing P-FBP + smoothing AMAP-TV JMAP-TV (β = 0) JMAP-TV (β = 200)Fig. 8. Reconstructions of real tomographic measurements. The display range for the images is 0 to 10 cm−1. The reconstructions using the TV-prior were
obtained with γ = 0.01. The number of iterations were 50 for reconstructions without TV prior and 1,000 with TV prior. The insets are blow-ups of the
reconstructions at the isocenter.

stripe-weighted least-squares (SWLS) model, which provides
insight about the model and its similarities with existing
models.

To assess the reduction of ring artifacts in the recon-
structions, we have proposed a “ring ratio” error measure
which quantifies the flat-field error in the image domain.
Our experimental results indicate that the model effectively
mitigates ring artifacts even for low SNR data, not only
with simulated data but also with real data sets. In some
cases, the proposed method may itself introduce artifacts when
not appropriately regularized. These artifact essentially arise
because of overfitting, and we have shown that they can be
mitigated or supressed by means of a suitable regularizing
flat-field prior. Moreover, we have shown experimentally that
the JMAP and the SWLS models have similar performance in
terms of noise and reconstruction quality.

Finally, we mention that the proposed methodology can
readily be extended to estimate a time-varying flat-field which
may be useful in applications where the flat-field does not
remain stable while acquiring the tomographic measurements
and/or when the scanner acquires projection images and flat-
field images in an interleaved temporal order.

APPENDIX A
EXTREMA OF THE RADIAL PROFILE

The extrema of the radial profile µ̃(ρ), defined in (9), depend
on the parameters t0 and ε > 0. To see this, we derive the
critical points of µ̃(ρ). Setting the derivative equal to zero
yields the equation

µ̃′(ρ) = −3ρ
(
σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2

)
= 0

where σ = ε+ it0. It follows that the critical points are ρ = 0
and any solution to the equation

σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2 = 0,

or equivalently, ρ = 0 and solutions to the equation

σ

σ̄
= −

(
σ2 + ρ2

σ̄2 + ρ2

)5/2

.

Taking the complex logarithm of both sides of the equation
yields the equation 2∠σ + 2kπ = π + 5∠(σ2 + ρ2), k ∈ Z,
and hence

∠(σ2 + ρ2) =
2

5
∠σ +

2k − 1

5
π, k ∈ Z. (38)

This implies that the tangent of ∠(σ2 + ρ2) is equal to

2εt0
ρ2 + ε2 − t20

= tan

(
2

5
∠σ +

2k − 1

5
π

)
, k ∈ Z, (39)

or equivalently, if we define c−1
k = tan

(
2
5∠σ + 2k−1

5 π
)

and
solve for ρ2, we get ρ2 = 2εt0ck + t20 − ε2, k ∈ Z. Thus, in
addition to ρ = 0, the real roots of the right-hand side of this
equation are the critical points of µ̃(ρ), and hence we may
limit our attention to k ∈ Z for which 2εt0ck + t20 − ε2 ≥ 0.

In order to find the extrema of µ̃(ρ), we now rewrite (9) as

µ̃(ρ) =
1

4π

|σ|
|σ2 + ρ2|3/2

cos(∠σ − ∠(σ2 + ρ2)).

At a nonzero critical point ρk 6= 0, the angle ∠(σ2 + ρ2
k) is

given by (38), and it follows from (39) that

|σ2 + ρ2
k| = 2ε|t0|

(
c2k + 1

)1/2
.

This allows us to express the extrema associated with ρk as

µ̃(ρk) =
(ε2 + t20)1/2

4π(1 + c2k)3/4(2ε|t0|)3/2
cos

(
2

5
∠σ +

2k − 1

5
π

)
,

and it immediately follows that for |t0| � ε, the extrema are
approximately inversely proportional to

√
ε3|t0|.
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APPENDIX B
INTERPRETATION OF FLAT-FIELD ESTIMATE

The ith element of flat-field estimate v̂, defined in (22), is
given by

v̂i(u) =
1T fi + 1T yi + αi − 1

di(u)
(40)

where fi ∈ Rs, yi ∈ Rp, di(u) = s+ τi(u) + βi, and τi(u) =∑p
j=1 exp(−eTi Aju). This expression can be reformulated as

v̂i(u) =
s

di(u)

1T fi
s

+
τi(u)

di(u)

1T yi
τi(u)

+
βi

di(u)

αi − 1

βi

=
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

v̂pr(αi, βi) (41)

where the ML estimate v̂f is defined in (5), the estimate v̂y(û)
is defined in (16), and

v̂pr(α, β) = diag(β)−1(α− 1)

is the mean of the Gamma prior. It follows from the definition
(20), i.e., di(u) = s+ τi(u) + βi, that

s

di(u)
+
τi(u)

di(u)
+

βi
di(u)

= 1

and hence v̂i(u) is a convex combination of three estimates.
Thus, the full flat-field vector v̂(u) can be expressed as

v̂(u) = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β)

where θ1 = diag(d(u))−1s1, θ2 = diag(d(u))−1τ(u), and
θ3 = diag(d(u))−1β with θ1 + θ2 + θ3 = 1.

APPENDIX C
TYPE-II ML ESTIMATION OF HYPERPARAMETERS

The marginal probability of fi1, . . . , fis given the hyperpa-
rameters αi and βi can be computed analytically and is given
by

P(fi1, . . . , fis | αi, βi)

=

∫ ∞
0

P(fi1, . . . , fis | vi)P(vi | αi, βi)dvi

=
Γ(ki + αi)

(
∏s
k=1 fik!) Γ(αi) ski

(
βi

s+ βi

)αi ( s

s+ βi

)ki
(42)

where ki =
∑s
k=1 fik. Here the identity

∫∞
0
xbe−ax dx =

Γ(b+1)
ab+1 was used to derive this expression. This probability

distribution resembles the negative binomial distribution, and
it follows from the first-order optimality conditions associated
with (24) that βi = sαi/ki, or equivalently, αi/βi = ki/s.
This implies that the mean of the Gamma prior is equal
to the flat-field ML estimate (v̂f)i. Substituting the expres-
sion for βi in (24), we obtain the one-dimensional problem
argminαi κi(αi) where

κi(αi) = − log
Γ(ki + αi)

Γ(αi)
− αi log

αi
αi + ki

− ki log
ki

αi + ki
.

The derivative of κi(αi) is

κ′i(αi) = −
[
z(ki + αi)−z(αi)− log

(
1 +

ki
αi

)]
= −

ki−1∑
l=0

1

αi + l
+ log

(
1 +

ki
αi

)
,

where z(x) denotes the digamma function. Similarly, the
second derivative is given by

κ′′i (αi) =

ki−1∑
l=0

1

(αi + l)2
− ki
αi(αi + ki)

(43)

where the summation satisfies the inequality

ki−1∑
l=0

1

(αi + l)2
=

αi+ki−1∑
n=αi

1

n2
>

∫ αi+ki

αi

1

x2
dx

=
k

αi(αi + ki)
(44)

for αi > 0. This shows that κ′′i (αi) > 0 for α > 0, and hence
κi is convex on the positive real line. Moreover, since κ′(αi)
tends to zero as as αi tends to infinity, κ′(αi) can not have
a positive zero. Consequently, the resulting flat-field Gamma
prior has zero variance (i.e., αi/β2

i tends to zeros for αi →∞
since βi = sαi/ki) and its mean is equal to the empirical flat-
field estimate, i.e., αi/βi = (v̂f)i.
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