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Summary (English)

X-ray computed tomography (CT) is a widely used non-invasive technology that
is used to image the internal structure of objects without cutting and breaking
them. Since the inception of the first prototype of a CT scanner in 1969, the
industrial and medical applications of CT are rapidly increasing. The stan-
dard image reconstruction models for X-ray CT are based on the assumption
that the object of interest remains stationary during data acquisition in a CT
scanner. However, this assumption fails for dynamic CT where the object of
interest deforms over time, for example, scanning a beating heart, a pill dis-
solving in a liquid, etc. The violation of the stationarity assumption can lead
to severe motion artifacts in the images reconstructed with the standard image
reconstruction models.

The standard reconstruction models that are based on a stationarity assumption
can be used for dynamic CT if a sufficient number of projections are acquired
within a short period of time such that the object deforms within a tolera-
ble limit. However, limited acquisition time leads to noisy measurements, and
X-ray source intensity estimates based on such measurement can be highly un-
certain. These uncertainties cause severe and systematic artifacts, known as
ring artifacts, which may hide the important information in a reconstructed im-
age. To mitigate this problem, we derive a new convex reconstruction model by
carefully modelling the measurement process and by taking uncertainties into
account. The experimental results indicate that the model effectively mitigates
ring artifacts not only with simulated data, but also with real data sets.

If the stationarity assumption cannot be fulfilled, we can compensate the motion
effects by incorporating the motion behaviour of the object of interest into a re-
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construction model. In practice, the motion behaviour of the object is unknown.
Therefore, we jointly conduct motion estimation and image reconstruction with
motion-compensated reconstruction models. These models generally assume
that deformations in the object are continuous and smooth over time. Thus,
they are not suitable for non-smooth deformations, such as the formation of
cracks. In this thesis, we derive a motion model to represent the formation and
closing of cracks based on the underlying physics of the crack formation. The
proposed model effectively regularizes non-smooth and large deformations along
cracks with minimal influence on the nearby regions.

The motion-compensated reconstruction models implicitly exploit the redun-
dant motion information present in the measurements acquired over time from
different projection angles. Variability in the acquired projections is highly
important. In view of this, we propose an interlaced projection scheme to dis-
tribute projection views over time based on the family of metallic angles. This
scheme is a fixed angular gap scheme, and hence, easy to implement in prac-
tice. Moreover, this scheme is suitable for scanning a fast-deforming object. We
demonstrate that the proposed interlaced distribution of projection views over
time greatly enhances the spatio-temporal resolution of the motion-compensated
reconstructions.

In this thesis, our investigations bring forth methodologies which have the poten-
tial to achieve high spatio-temporal resolution reconstructions of objects deform-
ing over time. These methodologies pave the way to study the rapid dynamic
behaviors, such as the fluid flowing through porous rock and the formation of
cracks in drying paint, through tomographic measurements.



Summary (Danish)

Computertomografi (CT) ved brug af røntgenstråler er en bredt anvendt tek-
nologi, som bruges til at afbilde det indre af et objekt uden at skære i eller
ødelægge objektet. Antallet af industrielle og medicinske anvendelser af CT er
steget støt siden den første prototype af en CT-skanner blev konstrueret i 1969.
De gængse billedrekonstruktionsmodeller for røntgen-CT antager at objektet i
CT-skanneren forbliver stationært unden skanningen, men denne antagelse hol-
der ikke for dynamisk CT, hvor objektet deformerer over tid. Som eksempler på
sådanne objekter kan nævnes et slående hjerte, en pille som opløses i en væske,
osv. Overholdes antagelsen om stationaritet ikke, så kan de gængse billedrekon-
struktionsmodeller føre til rekonstruktioner med grove bevægelsesartefakter.

De gængse rekonstruktionsmodeller kan dog bruges til dynamisk CT, hvis et
tilstrækkeligt antal projektioner er til rådighed inden for et kort tidsrum, så-
ledes at deformationen inden for dette tidsrum er tilpas lille. Desværre kan
en begrænsning af skanningstiden føre til støjfyldte målinger, og et estimat af
røngtenkildens intensitet baseret på sådanne målinger kan være behæftet med
stor usikkerhed. Denne usikkerhed kan føre til slemme og systematiske artefak-
ter, som kaldes for ringartefakter, og disse kan skjule vigtig information i det
rekonstruerede billede. For at imødegå dette problem udledes en ny konveks
rekonstruktionsmodel, som omhyggeligt modellerer måleprocessen for derved at
tage hensyn til usikkerheder. De eksperimentielle resultater indikerer, at mo-
dellen effektivt reducerer ringartefakter for såvel simulerede data som rigtige
måledata.

Hvis antagelsen om stationaritet ikke kan opfyldes, så kan man forsøge at kom-
pensere for bevægelseseffekter ved at inkorporere en model for bevægelsen i
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rekonstruktionsmodellen. I praksis er bevægelsesmodellen ukendt, og den skal
derfor bestemmes eller estimeres sammen med billedet ved hjælp af en bevæ-
gelseskompenseret rekonstruktionsmodel. Sådanne modeller antager generelt at
objektets bevægelse er kontinuert og glat som funktion af tid, og de er derfor
ikk egnede til rekonstruktion af ikke-glatte deformationer som for eksempel for-
mation af sprækker. I denne afhandling udledes en bevægelsesmodel, som kan
repræsentere formation og lukning af sprækker. Modellen er baseret på en fysisk
model for formation af sprækker, og den regularisere ikke-glatte og store defor-
mationer langs sprækker med minimal indflydelse på omkringliggende områder.

Den bevægelseskompenseret rekonstruktionsmodel kan indirekte udnytte redun-
dant bevægelsesinformation i måledata, som er optaget over tid fra forskellige
projektionsvinkler. Variation i projektionerne er yderst vigtig. Set i dette lys
foreslås et sammenflettet projektionssystem som fordeler projektionsvinklerne
over tid baseret på en familie af metalliske vinkler. Dette system passer til skan-
ning af hurtigtdeformerende objekter. Det demonstreres at den foreslåede for-
deling af projektionsvinkler øger både den tidslige og den rummelige opløsning
i forbindelse med bevægelseskompenserede rekonstruktioner.

Undersøgelserne i denne afhandling fører til metodikker med potentiale for at
opnå rekonstruktioner med høj tidslig og rummelig opløsning af et objekts de-
formation over tid. Disse metodikker baner vejen for CT-baserede studier af
hurtigt bevægende dynamiske systemer som f.eks. en væske, der flyder gennem
et porøst materiale, eller formation af sprækker i maling under tørring.
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Chapter 1

Introduction

X-ray computed tomography (CT) is a technique to image the internal cross-
section without cutting or breaking an object. In 1969, Hounsfield built the first
prototype of a CT scanner, and since then, the CT technology has been used
extensively in many fields. For example, in medical science for the lung cancer
screening, radiation therapy treatments planning, etc., and in material science
for detecting material defects, product quality control, etc. One of the most
popular reconstruction algorithms, used even today in industrial CT scanners,
to reconstruct an image from its X-ray images is based on an inverse Radon
transform, which was introduced by Johann Radon in 1917, before the invention
of the CT technology. In the last 100 years, a lot of efforts have been put into
improving the theoretical understanding of the Radon transform; in the last 50
years, we have seen a tremendous development on the theoretical, numerical,
and implementation aspects of CT. The industrial and medical applications
of CT are rapidly increasing along with advancements in CT hardware, which
brings new challenges, research questions and opportunities for mathematicians,
industries, doctors, physicists, etc.

The standard image reconstruction models are mainly based on the assumption
that the object of interest remains stationary during data acquisition in a CT
scanner. However, this assumption fails for dynamic CT where the object of in-
terest deforms over time, for example, scanning a beating heart, a drying paint,
etc. There are numerous industrial and medical applications where the study



2 Introduction

of deforming objects is of the prime importance. Dynamic CT reconstruction
is a challenging problem because of the interplay between many factors such as
the speed of a deforming object, the gantry rotation speed, the number of pro-
jections, the detector acquisition time, the scanning protocol, the measurement
model, and the reconstruction model.

1.1 Some Challenges in Dynamic CT

In dynamic CT, we aim to reconstruct a sequence of images that represent a
deforming object over time. We desire to detect rapid changes over time in
addition to detect the smallest spatial features of a deforming object. How-
ever, these two basic requirements require a trade-off between the achievable
temporal and spatial resolution in dynamic CT. The time gap between two
consecutive projections should be short to detect rapid changes in an object
and hence to achieve a high temporal resolution. The shorter time gap results
in low-intensity measurements due to limited detector acquisition time. The
reconstruction based on low-intensity measurements is a challenging problem,
in part because of low signal-to-noise ratio (SNR). On the other hand, an in-
crease in the acquisition time limits the total number of projections that can
be acquired within the allotted time for an experiment. But, a lower number of
projections may introduce limited view or sparse view artifacts and hence limits
the achievable spatial resolution. A large number of projections is one of the key
requirements to reconstruct an image with a high spatial resolution. Therefore,
a resolution trade-off boils down to the trade-off between detector acquisition
time and a number of projections within the allotted time for an experiment. In
practice, many dynamic CT applications work with low-intensity measurements
to acquire many projections in a short period of time. This allows them to use
the standard reconstruction models with stationarity assumptions if a deforming
object has not deformed much during the acquisition window.

In practice, X-ray detection is a random process. Especially with low SNR
measurements (noisy measurements), it is essential that a reconstruction model
should be based on a measurement model that take into account the statistical
nature of a measurement process. These reconstruction models depend on the
X-ray source intensity, but it is never known exactly. It is measured and hence
uncertain. Under normal operating conditions, when the acquisition time is
sufficiently high, this kind of uncertainty typically has a negligible effect on the
reconstruction quality. However, in dose- or time-limited applications such as
dynamic CT, this uncertainty may cause severe and systematic artifacts known
as ring artifacts. Therefore, a careful modelling of these uncertainties in a
reconstruction model is important for dynamic CT applications.
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If the acquisition time is high or the object is deforming rapidly, only a few pro-
jections are available for reconstruction with the standard reconstruction model
with stationarity assumptions. Thus, the reconstruction problem is highly un-
derdetermined. Therefore, it becomes essential to regularize the reconstruction
problem by modelling relationship over time either in the image space or in the
projection space. We can represent time-dependent changes in the image do-
main in terms of a deformation map and estimate this along with the unknown
object. This is a joint motion estimation and an image reconstruction approach,
generally known as a motion-compensated (MC) method. In effect, projections
acquired at different instants of time contribute together and improve both the
spatial and the temporal resolution of a dynamic CT system.

In most of the MC reconstruction models, one of the key assumptions is the so-
called one-to-one correspondence, almost everywhere, among an image sequence
that represents a deforming object. The deformation map between images is as-
sumed to be locally invertible and orientation preserving, i.e., no local folding in
a material over time. However, this assumption fails if either a crack forms in a
material or if a region in a material gets damaged due to X-ray radiations while
scanning the material in a scanner. The image sequence will no longer have
one-to-one correspondence everywhere, hence called a non-corresponding im-
age sequence. MC reconstruction frameworks with a non-corresponding motion
model have not been explored much in the context of dynamic CT.

The MC reconstruction approaches exploit information from the acquired pro-
jection data to estimate time-dependent changes in a deforming object. The
variability in the projection data determines the quality of an MC reconstruc-
tion. Therefore, a strategy to distribute projection views over time, i.e., a view
sampling scheme, need to be designed to collect maximum information about
the deformation of a deforming object. Recently, it has been shown that an in-
terlaced sampling scheme has great potential over the conventional progressive
sampling for dynamic CT. Major interlacing schemes are not a fixed angular
sampling (FAS) scheme. In a FAS scheme, view angle between two consecu-
tive projections remains same throughout the experiment, and hence easy to
implement in practice. Moreover, the existing interlaced FAS schemes are not
suitable to scan fast-moving objects.

1.2 Contributions in the Thesis

This thesis aims to understand and investigate different factors that can influ-
ence the quality of dynamic CT reconstructions. In particular, we investigated
issues associated with uncertainties due to source intensity measurements, dis-
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tribution of projection views over time, and non-corresponding motion models
for dynamic CT. We can summarize our contributions in the following three
major work:

• Classical methods for X-ray computed tomography are based on the as-
sumption that the X-ray source intensity is known, but in practice, the
intensity is measured and hence uncertain. In time-limited applications
such as dynamic CT, this uncertainty may cause severe and systematic
artifacts known as ring artifacts. By carefully modeling the measurement
process and by taking uncertainties into account, we derive a new convex
model that leads to improved reconstructions despite poor quality mea-
surements. We demonstrate the effectiveness of the methodology based
on simulated and real datasets.
Related Paper:
Hari Om Aggrawal, Martin Skovgaard Andersen, Sean Rose, and Emil Y.
Sidky. “A Convex Reconstruction Model for X-ray Tomographic Imaging
with Uncertain Flat-fields”. IEEE Transactions on Computational Imag-
ing, Volume 4, Issue 1, March 2018.

• Conventional motion models are based on the assumption that the de-
formation map is continuously differentiable and has a one-to-one cor-
respondence almost everywhere. However, these motion models fail for
discontinuous deformations, e.g., a crack formation, and non-smooth con-
tinuous deformations, e.g., a closing of a crack. We derive a motion model
in an image registration framework based on the underlying physics of a
crack formation in a material. The proposed model identifies the loca-
tion of a crack as well as regularizes non-smooth and large deformations
along the crack region with minimal influence on deformations in nearby
regions. We demonstrate the effectiveness of the methodology based on
intensity-preserving and mass-preserving simulated data sets.

• In dynamic CT, the distribution of projection views over time, particularly
based on an interlacing sampling scheme, influences the quality of images
reconstructed with a motion-compensated reconstruction model. Major
interlacing schemes are not a fixed angular sampling (FAS) scheme, hence
not easy to implement in practice. Moreover, the existing interlaced FAS
schemes are not suitable to scan fast-moving objects. In this work, we
propose an interlaced FAS scheme based on the family of metallic angles.
This scheme guarantees an aperiodic pattern and it is suitable to scan
fast-moving objects due to small and adjustable angular gaps between
consecutive projections. We conduct a preliminary study and demonstrate
that the proposed scheme substantially enhances the quality of images
reconstructed with a motion-compensated reconstruction model based on
simulated datasets.
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1.3 Structure of the Thesis

Chapter 2 and 3 provide the basic background information to understand re-
maining chapters of this thesis. They also cover a brief literature survey associ-
ated with challenges addressed in chapter 4 and 6. In chapter 2, we introduce
the fundamentals of X-ray computed tomography. We give a brief overview of
X-ray measurement models with their underlying assumptions, discuss recon-
struction models and methods, their inherent ill-posedness, and an approach to
regularize the problem. We discuss the underlying cause of a systematic artifact
known as ring artifacts in the reconstruction. We also present state-of-the-art
methods to mitigate ring artifacts in the reconstruction. In chapter 3, we intro-
duce dynamic CT and motivate motion modelling for dynamic CT. We provide
the basic definitions of spatial and temporal resolution in the context of dy-
namic tomography and motivate the role of a sampling scheme to achieve high
spatio-temporal resolution. We present a general motion model in an image
registration framework and discuss state-of-the-art motion-compensated recon-
struction models based on image registration models. We also discuss in brief
other temporal regularization methods for dynamic CT.

Chapter 4, 5, and 6 cover the main contributions of this thesis. Chapter 4
addresses challenges associated with uncertainties due to source intensity mea-
surements. We review some existing approaches to CT reconstruction based on
low SNR measurements. We illustrate the sensitivity of these existing meth-
ods to flat-field intensity estimation errors. We derive a new reconstruction
model that accounts for uncertainties in flat-field measurements. We describe
our numerical investigation and validate the proposed model based on simulated
data as well as on real tomographic measurements. In chapter 5, we develop
a non-corresponding image registration model with a special focus on images
with cracks. We introduce two non-corresponding problems with their under-
lying physical characteristics. We propose an image registration model, mainly
inspired from the field of damage mechanics, to solve the non-corresponding
problems. We also discuss general properties of the proposed model and es-
tablish a connection with the state-of-the-art non-corresponding models. We
explain a numerical scheme based on the discretize-then-optimize framework
and demonstrate the potential of the proposed model based on an intensity-
preserving and a mass-preserving simulated image phantoms. In chapter 6,
we propose an interlaced sampling scheme based on the family of metallic an-
gles. We develop an implicit reference based motion-compensated reconstruction
model assuming the one-to-one correspondence everywhere. We conduct a pre-
liminary study and demonstrate the effectiveness of the proposed scheme with
the motion-compensated reconstruction model based on simulated datasets.
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Chapter 2

X-ray Computed Tomography

X-ray computed tomography (CT) is a non-invasive method that is used to im-
age the internal structure of objects without cutting or breaking them. In a CT
scanner, the X-ray source illuminates an object from different projection direc-
tions while detectors capture the attenuated X-rays as shown in Fig. 2.1(a). As
X-rays propagates through the object along straight lines, they attenuate expo-
nentially with a rate of decay that depends on the material attenuation function
µ(x), following the Lambert–Beer law. Specifically, the incident intensity of the
X-ray beam on a detector is given by

I ≈ ηTeI0 exp

(
−
∫
l

µ(x) dx

)
(2.1)

where η ∈ (0, 1] is the detector efficiency, Te is the detector acquisition time, I0
is the photon flux of the X-ray source, and l denotes the line segment between
the source and a detector. The description in (2.1) assumes a monochromatic
source and does not take into account the scatter contributions, the detector
crosstalks, the finite size of the detector, the statistical nature of the photon
arrival process into account, etc.[Nuyts13]. Let v is the flat-field intensity given
by

v = ηTeI0, (2.2)
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Figure 2.1: (a) a setup to illustrates the tomographic scanning of a walnut
from different projection directions. (b) a cross-sectional recon-
struction of the walnut from tomographic measurements.

and tl(µ) is the transmission function given by

tl(µ) = exp

(
−
∫
l

µ(x) dx

)
. (2.3)

We represent the equation (2.1) as

Rµ(l) = − log
I

v
≈
∫
l

µ(x) dx (2.4)

where the function Rµ(l) is known as the Radon transform of the function µ(x)
along the line l. The Radon projections collected from multiple directions is
also known as a sinogram because the Radon transform of an off-centered point
in an object has a sinusoidal pattern due to the circular scanning around the
object. The inverse Radon transform is the basis of major X-ray CT reconstruc-
tion models, see e.g. [Buzug08]. Reconstruction methods estimate the spatial
attenuation of the object of interest based on the number of Radon projections,
given the measurement geometry, the source intensity, and possibly some as-
sumptions on the statistical nature of the measurement process. For example,
Fig.2.1(b) shows a two-dimensional cross-section of a walnut reconstructed from
the inverse Radon transform of the Radon projections.

In practice, X-ray photon arrival is a random process. Section 2.1 explains
underlying measurement models that take statistical nature of measurements
into account. Section 2.2 introduces the basic definition of an inverse problem
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and regularization briefly. Section 2.3 discusses various reconstruction models
and methods associated with measurement models as discussed in Section 2.1,
comments on their inherent ill-posedness, and explains approaches to regularize
the problem. In the last section 2.4, we discuss the underlying cause of system-
atic artifacts known as ring artifacts. We also present state-of-the-art methods
to mitigate ring artifacts in a reconstruction. For in-depth description of top-
ics covered in this chapter, the reader is suggested to see [Prince15; Hansen10;
Buzug08; Kak01; Bertero98].

2.1 X-ray Photon Statistics

For photon-counting detectors, it is common to assume that the photon arrival
process is a Poisson process, and each measurement is assumed to be a sample
from a Poisson distribution whose mean is prescribed by the Lambert–Beer law.
However, for current integrating detectors, as in the current clinical X-ray CT
systems, measurements statistics are relatively complicated than for the photon-
counting detectors. X-ray photons statistics depends on many factors which are
encountered in the transmission chain from the X-ray source to a detector. Few
of the variability sources are the fluctuation of an X-ray tube current, energy of
photons, scattering or absorption inside an object, Compton scattering or pho-
toelectric absorption in the detector, scintillator photo-conversion, electronic
noise, quantization error, etc. Ideally, a “Poisson + Gaussian” model is consid-
ered as a reasonable noise model for measurements as discussed in [Nuyts13].

In this thesis, we discuss the measurement model for the photon-counting de-
tectors without any electronic noise. Thus, with the assumption that the arrival
process is Poisson process, measurement y is a realization of a random variable
y which, conditioned on µ and v, is a Poisson random variable whose mean is
prescribed by the Lambert–Beer law, i.e.,

y | µ, v ∼ Poisson (v · tl(µ)) (2.5)

or equivalently, the probability distribution P(y | µ, v) is given by

P(y | µ, v) =
1

y!
(v · tl(u))y exp(−v · tl(u)) (2.6)

where the expected mean of y is E[y] = v · tl(u).

The coefficient of variation (CV) measures the dispersion of a random variable
in relation to its mean value; it is defined as the ratio of the standard deviation
to the mean. The CV of a Poisson distribution for the random variable y is
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given by

CV =
1√

v · tl(µ)
=

1√
ηTeI0 · tl(µ)

.

The above definition signifies that the relative noise level in a measurement
increases with either the decreasing photon flux or the decreasing acquisition
time or both. Therefore, problems may arise in dynamic tomography where
the detector acquisition time is limited and in applications where a strict dose
is required such as for the diagnosis of patients. The relative noise level also
depends on the attenuation function of the object of interest.

It can be shown that the measurement y approximately satisfies a Gaussian
distribution when the incident photon flux on the detector is high [Buzug08],
i.e.,

y | µ, v ∼ N (v · tl(µ), v · tl(µ)) (2.7)

where the mean and variance of the random variable y are equal, and the prob-
ability distribution of y is given by

P(y | µ, v) =
1√

2πv · tl(µ)
exp

(
− (y − v · tl(µ))2

2v · tl(µ)

)
. (2.8)

It is possible to calculate the probability distribution of the log-normalized pro-
jection data

b = − log
(y
v

)
. (2.9)

by utilizing the following result [Papoulis02, Chapter 5]:

Suppose that x is a random variable with probability distribution Px(x) and z
is an another random variable, defined as z = g(x). The probability distribution
of z is given by

Pz(z) =

n∑
i=1

Px(xi)

|g′(xi)|
(2.10)

where g′(x) is the derivative of g(x) and x1, x2, . . . , xn are the real roots of
equation z = g(x).

The probability distribution of the random variable b = − log(y/v), utilizing
the result (2.10) is given by

Pb(b) =v exp(−b)Py(v exp(−b))

=

√
v

2π · tl(µ)
exp(−b) exp

(
− (v exp(−b)− v · tl(µ))2

2v · tl(µ)

)
. (2.11)



2.2 Inverse Problem and Regularization 11

After replacing the exp(−b) by its first order Taylor approximation at
∫
l
µ(x) dx,

i.e.,

exp(−b) ≈ exp

(
−
∫
l

µ(x) dx

)
− exp

(
−
∫
l

µ(x) dx

)(
b−

∫
l

µ(x) dx

)
, (2.12)

the expression (2.11) can be approximated as

P(b) ≈
√
v · tl(u)

2π
exp

(
−
(
b−

∫
l

µ(x) dx

)
− (v · tl(u))

(b−
∫
l
µ(x) dx)2

2

)
.

(2.13)

We can also determine the probability distribution of the random variable b by
linearizing the expression (2.9) using Taylor expansion at the mean value of the
random variable y, i.e.,

b ≈− log
v · tl(u)

v
− 1

v · tl(u)
(y − v · tl(u))

=

(
1 +

∫
l

µ(x) dx

)
− 1

v · tl(u)
y. (2.14)

This is a good approximation for large values of v · tl(u) as the higher order
terms of the Taylor expansion are small. The approximated function (2.14) is a
linear function of y, therefore, assuming the random variable y has a Gaussian
distribution as defined in (2.7), the random variable b also has a Gaussian
distribution, i.e.,

b ∼ N
(∫

l

µ(x) dx,
1

v · tl(u)

)
(2.15)

or equivalently, the approximated probability distribution of b is given by

P(b) =

√
v · tl(u)

2π
exp

(
−(v · tl(u))

(b−
∫
l
µ(x) dx)2

2

)
. (2.16)

It can be seen that the approximated probability distribution (2.13) has one
extra linear term in the exponential compared to the approximated probability
distribution (2.16). Fig. 2.2 displays the probability distributions (2.11), (2.13),
and (2.16) to illustrate the goodness of approximations. The approximations
are good at higher photon flux on the detector.

2.2 Inverse Problem and Regularization

A forward problem is concerned with the effect of a physical system due to the
known cause, and an inverse problem is associated with the identification of
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Figure 2.2: Probability distribution of a log-normalized projection data and
its two approximations at two values of flat-field intensity, i.e.,
v = 102 and v = 103, assuming transmission function tl(u) is fixed
at 0.5. The approximations are good at higher photon flux on the
detector.

the cause from its effects. For example, in computed tomography, estimation
of an attenuation function from measurements is an inverse problem. The for-
ward problem is the computation of line integrals with the knowledge of the
attenuation function of a material.

The French mathematician Jacques Hadamard introduced three requirements
that must be satisfied by a well-posed problem. These are:

• Existence: The problem should have at least one solution,

• Uniqueness: The solution should be unique, and

• Stability: The solution must depend continuously on data.

A problem which does not satisfy all of the properties as mentioned above is
considered as an ill-posed problem. Inverse problems are typically ill-posed.
Majorly, ill-posed problems do not satisfy the third requirement. As a result,
low-level noise in the measured data may produce high-frequency fluctuations in
the naive solution of an ill-posed inverse problem. Therefore, instead of looking
for the naive solution which might be unacceptable, we look for an approximate
solution close to a physically acceptable solution. To achieve this, we provide
additional information about the physical system which expresses the expected
properties of the solution; this is an underlying principle of a regularization
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method. In the next section, we discuss the ill-posedness of inverse problems
associated with X-ray CT reconstruction models.

2.3 Reconstruction Models and Methods

In this section, we present an analytical reconstruction model based on the
measurement model (2.1) and discuss a regularization approach to handle the
ill-posedness of the problem. Afterwards, we present a linear reconstruction
model based on the measurement model (2.1) and discuss issues related to the
discretization, ill-posedness, and regularization of the problem. We also present
a statistical reconstruction model based on Bayesian methods where measure-
ments and a priori information are assumed to be of a statistical nature.

2.3.1 Analytical Reconstruction Methods

According to the well-known Fourier slice theorem, the one-dimensional Fourier
transform of a Radon projection data acquired from the direction θ is a slice of
the two-dimensional Fourier transform of the original object along a radial line
corresponds to the direction θ. Therefore, if the Radon projections are available
from all the directions in a full or half rotation, we can reconstruct the object
uniquely by performing a two-dimensional inverse Fourier transform. If we let
x = ρnφ, where nφ = (cosφ, sinφ) such that |ρ| is the distance to the origin, the
inverse Radon transform is given by

µ(x) =
1

2

∫ π

−π

∫ ∞
−∞
|ζ|Hθ(ζ) expi2πζρn

T
φnθ dζdθ (2.17)

where Hθ(ζ) is the Fourier transform of the Radon data in the direction θ. The
high-pass ramp filter |ζ| arises due to the change of variables in the formulation,
and it reflects the filtering of the Fourier transform of the Radon data before
the actual inversion. The ramp filter |ζ| amplifies the high-frequency noise in
the measured data which generally result in an unacceptable reconstruction.
We reach the similar conclusion by analysing the singular value decay of the
Radon transform operator; the singular values decay slowly to zero, i.e., σ ∝
1/
√
m for large m. As a consequence, the Picard criterion is not satisfied by

an arbitrary Radon data [Bertero98], and small singular values introduce high-
frequency noise in the reconstruction. To mitigate this problem, a low-pass filter
WZ(|ζ|), characterized by a cut-off frequency Z, is introduced in the equation
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(2.17), and a regularized analytical reconstruction formula is given by

µ(x) =
1

2

∫ π

−π

∫ ∞
−∞
|ζ|WZ(|ζ|)Hθ(ζ) expi2πζρn

T
φnθ dζdθ. (2.18)

which is the basis of the filtered backprojection (FBP) algorithm. The FBP
algorithm mainly consists of the following steps:

• for each value of θ, compute the Fourier transform of Radon data as defined
in (2.4),

• apply the ramp filter along with the low-pass filter,

• compute the inverse Fourier transform to obtain a filtered projection,

• backproject the filtered projections from all directions in the image space
and sum them up.

The measurement model (2.4) is the basis for FBP algorithm; however, the
measurement model (2.5) reflects the underlying physics of measurements in
practice. Nevertheless, the FBP algorithm works satisfactory at high photon
counts, but it does not perform well for low dose applications and for dynamic
CT where acquisition time is limited. Moreover, FBP algorithm assumes a con-
tinuum of projections from all the directions. Therefore, in practice, we need
a large number of projections, and as a result, the total radiation dose ad-
ministered to an object increases drastically. However, iterative reconstruction
methods require a finite number of projections to achieve a high-quality recon-
struction. Moreover, the algebraic or statistical reconstruction models provide
flexibility to reconstruct images from arbitrary X-ray system geometries and
allow a better modelling of real physical measurement processes and makes it
possible to include prior information about the object in the reconstruction
model [Nuyts13]. Most importantly, FBP is a computationally fast algorithm
and has low memory footprint. Therefore, FBP is still a widely used algorithm
in industrial CT scanners.

2.3.2 Algebraic Reconstruction Methods

In this section, we discuss reconstruction models based on the measurement
model (2.1). But instead of the analytical approach as discussed in the previous
section, we discretize the expression (2.1) and represent the model as a linear
system of equations. We use the notation Iij to denote the measurement ob-
tained with detector elements i and projection j, and express the measurement
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model (2.1) as

bij = − log
vi
Iij

=

∫
lij

µ(x) dx, (2.19)

where b represents the log-normalized projection data and v = ηTeI0 is referred
as the flat-field intensity.

The attenuation function µ(x) may be discretized by using a parameterization,
i.e.,

µ(x) =

n∑
k=1

ukµk(x) (2.20)

where µk(x) is one of n basis functions (e.g., a pixel or voxel basis), and u ∈ Rn
is a vector of unknowns (e.g., pixel or voxel values). With this parameterization,
the line integrals in (2.19) can be expressed as∫

lij

µ(x) dx = eTi Aju

where the elements of the matrix Aj ∈ Rr×n are given by

(Aj)ik =

∫
lij

µk(x) dx,

and the system matrix A ∈ Rrp×n is defined as A = [AT1 · · ·ATp ]. Hence, the
measurement model (2.19) is expressed as

b = Au (2.21)

where b ∈ Rrp×1.

The model (2.21) is a linear reconstruction model, but an ill-posed inverse prob-
lem. Generally, the system matrix A is an ill-conditioned matrix whose sin-
gular values slowly decay to zero, and matrix has a large condition number.
As a result, a small change in the data may cause a large error in the solu-
tion of the equation (2.21). The ill-posedness of such a linear system has been
studied extensively using singular value decomposition (SVD) analysis, e.g., see
[Hansen10].

If the number of rows is more than the number of columns in the system matrix
A, and the system is inconsistent, no solution satisfies the linear system. A
problem is inconsistent when the measurement vector b does not belong to the
range of the matrix A. This scenario does not satisfy Hadamard’s requirement
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of the existence of a solution for a well-posedness problem, but we can fix this
by reformulating the problem as a linear least squares problem, i.e.,

minimize
u

1

2
‖Au− b‖22. (2.22)

The linear least squares problem only guarantees a solution, but it could be
highly noisy due to the ill-conditioning of the system matrix. In general, the
linear least squares problem has a unique solution if A is a full column rank
matrix. In the case of a rank-deficient matrix, there will be infinitely many
solutions. We can further reformulate the problem and choose a minimum norm
solution out of all possible solutions. This fixes the uniqueness requirement of
Hadamard for a well-posed problem.

In order to regularize the problem, we impose additional properties of the solu-
tion by adding a regularization term R(u), i.e.,

minimize
u

1

2
‖Au− b‖22 + γR(u). (2.23)

In the case of the Tikhonov regularization R(u) = 0.5‖u‖22, we regularize the
problem by penalizing the 2-norm of a solution to avoid large variations in the
solution due to the noise in the measurements. The regularization parameter
γ balances the contributions from the so-called data fidelity term ‖Au − b‖22
and the regularization term. The larger the γ, the more weight is given to the
regularity of a solution, and smaller the γ, higher would be the influence of noise
in the solution.

The choice of a regularization parameter depends on subjective expectations
from the solution of a problem, and for real-world applications, it is difficult to
quantify the expectation numerically based on some specific criteria. Moreover,
it could be computationally intensive to solve the problem multiple times with
different regularization parameters. There are few parameter choice methods
such as the discrepancy principle method which relies on a good estimate of
noise in the measured data and the L-curve method balances regularization
errors and perturbation errors in the given problem, see [Hansen10] for more
details.

In practice, the system matrix A is a very large sparse matrix; therefore iterative
methods are the method of choice to solve the large linear systems, instead of
numerical methods based on SVD. The iterative method such as algebraic recon-
struction technique (ART), also known as a Kaczmarz’s method is a row-action
method where one row is being used at a time to update the solution. However,
iterative methods such as Landweber, SART, SIRT, and gradient descent use
all rows simultaneously in an iteration. These iterative methods exhibit semi-
convergence where the iteration sequence initially approaches the exact solution,
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after which it starts to deviate and converge to an undesired naive solution.
Generally, row-action methods have faster convergence to a semi-convergence
point than the fully simultaneous methods. The initial iterates from the fully
simultaneous methods are generally smoother than the iterates from row-action
methods.

2.3.3 Statistical Reconstruction Methods

The arrival of photons is a random process as we discussed before in section
2.1. Recall that the measurement y is a random variable in the measurement
model (2.5). Statistical methods provide a framework to take into account the
random nature of a variable through its statistical properties such as probability
distribution. The maximum likelihood estimation (MLE) method estimates the
parameters of a statistical method given the random measurements. We define
a likelihood function

L(µ) = P(y | µ, v)

of the spatial attenuation function µ given the measurements y and flat-field
intensity v. The MLE estimate of µ is given by

µ̂ml = argmax
µ

P(y | µ, v).

The MLE estimate µ̂ml maximizes the probability of obtaining the observed
measurements. In practice, it is convenient to work with the logarithm of the
likelihood function. The maximum of a log-likelihood function coincides with
the maximum of the likelihood function because logarithm is a strictly increasing
function.

If a priori information about the attenuation function is known in the form of a
prior probability distribution P(µ), we can define a posterior distribution using
Bayes’ rule, i.e.,

P(µ | y) =
P(y | µ)P(µ)

P(y)
(2.24)

and obtain a maximum a posteriori probability (MAP) estimate which is given
by

µ̂map = argmax
µ

P(µ | y).

The MAP estimate is a point estimate and equal to the mode of the posterior
distribution. Thus, the MAP method does not give any information about the
uncertainity around the MAP estimate.
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Let us consider a two-dimensional geometry where p projections are acquired
using a one-dimensional detector array with r detector elements. We follow
notations and discretization steps as described in section (2.3.2) and assume
that the log-normalized projection data bij follows a Gaussian distribution, as
defined in (2.16), i.e.,

bij | u, vi ∼ N
(
eTi Aju,

1

vi exp(−eTi Aju)

)
. (2.25)

and the joint probability of b = (b11, . . . , brp) is given by

P(b | u) =

r∏
i=1

p∏
j=1

P(bij | u) (2.26)

assuming all measurements are independent. This is also called the likelihood
of u given measurements b. Suppose, a prior distribution of u follows

u ∼ N (0, γ−1I), (2.27)

we can define a MAP estimation problem, using Bayes’ rule (2.24),

ûmap = argmax
u

P(u | b)

= argmax
u

P(b | u)P(u)

= argmin
u
− log P(b | u)P(u)

= argmin
u

r∑
i=1

p∑
j=1

− log P(bij | u)− log P(u)

= argmin
u

1

2
‖Au− b‖2W +

γ

2
‖u‖22 (2.28)

whereW = diag(diag(1⊗v) exp(−Au)). AssumingW ≈ diag(y), the estimation
problem (2.28) is known as a weighted least-squares problem for X-ray CT.
Assuming W = I, the formulation (2.28) gives a Bayesian interpretation of the
least-squares problem with the Tikhonov regularization, as defined in (2.23),
where R(u) = 0.5‖u‖22.

2.4 Flat-field Estimation Errors and Ring Arti-
facts

Please note that a large part of this section has been published in the IEEE
journal:
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Transactions on Computational Imaging, Volume 4, Issue 1, March 2018.]

In practice, the flat-field intensity v = ηTeI0 is never known exactly, but it
is estimated by acquiring a number of X-ray images without an object in the
scanner. Such measurements are also known as air scans [Whiting06], flat-fields,
or white-fields[Sijbers04]. We assume that s flat-field measurements are acquired
for each detector element based on the flat-field measuring model

fij | vi ∼ Poisson (vi) (2.29)

for i = 1, . . . , r and j = 1, . . . , s, and F denotes a r × s matrix random variable
with elements fij . The matrix F ∈ Rr×s denotes a realization of F. A maximum
likelihood (ML) estimate of v is given by

v̂f = argmin
v
{− log P(F | v)} (2.30)

= argmin
v

{
s1T v − 1TFT log(v)

}
=

1

s
F1,

The flat-field estimate v̂f is simply an elementwise mean of s flat-field measure-
ments which is generally used to compute reconstructions. The v̂f is in itself a
random variable whose variance is given by

var(v̂f) =
v

s
.

Consequently, the signal-to-noise ratio (SNR) of the flat-field intensity estimate
is proportional to the square root of the product of the flat-field intensity and
the number of samples. Therefore, if the flat-field intensity is low or if the
number of flat-field measurements is small, the flat-field estimation error may
be significant and lead to reconstruction artifacts and errors. Since the flat-field
estimate is used to normalize measurements from all projection directions, the
estimation errors result in systematic reconstruction errors. These are known as
ring artifacts[Kowalski77] since they appear as concentric circles superimposed
on the reconstruction, and they are a common problem that can mask important
features in the reconstructed image [Thomas10; Dahlman12]. Ring artifacts
may not only occur because of flat-field estimation errors; miscalibrated or dead
detector elements and non-uniform sensitivities may also systematically corrupt
the measurements and lead to ring artifacts in the reconstruction [Sijbers04].

An experimental study [Fahrig06] has pointed out that the ring artifacts are
more severe when the X-ray source intensity is low, and hence a reconstruction
from low-intensity measurements may be very sensitive to the assumptions upon
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which the reconstruction method is based. The problem may arise when the ac-
quisition time is limited, e.g., in dynamic or time-resolved tomography, or if the
application imposes strict dose limitations. Thus, tomographic reconstruction
based on low-intensity measurements is a challenging problem, in part because
of the low SNR.

We now demonstrate the effect of flat-field estimation errors on the reconstruc-
tion based on the analytical reconstruction method (2.18). We use a constant
flat-field intensity v = ω1 for ω > 0 to generate a set of measurements according
to the model (2.1) with r = 185 detector elements and p = 360 parallel beam
projections covering a half rotation. For the reconstruction we use the flat-field
ML estimate v̂f , as defined in (2.30), where only one flat-field sample (s = 1) is
acquired for all detector elements based on (2.29).

Our object u, shown in Fig.2.3(b), consists of three squares of different sizes
where the attenuation of the innermost square is 0.5 cm−1, the enclosing square
has attenuation 0.25 cm−1, and the outermost square has no attenuation. The
domain size is 1 cm, and the reconstruction grid is 128 × 128 pixels. Fig. 2.3
shows sinogram as defined in (2.4) and analytical reconstructions based on (2.18)
with different values of the parameter ω. The effect of the flat-field error appears
as a line in the sinogram and as rings in the reconstructions. It is clear that the
severity of rings in the reconstructions and lines in the sinogram decreases with
the increasing flat-field intensity.

One approach to combating ring artifacts is to move the detector array be-
tween projections [Doran01]. This has an averaging effect on the systematic
error due to flat-field estimation errors and often results in noticeable improve-
ments, but it does not address or model the underlying cause. Moreover, it re-
quires special hardware for the acquisition, and it is not suited for applications
such as dynamic CT where fast acquisition times are important. Alternative
software-based methods to mitigate ring artifacts also exist. Roughly speaking,
these methods can be put into three categories: sinogram preprocessing methods
[Kowalski78; Raven98; Münch09; Rashid12; Kim14], combined ring reduction
and reconstruction methods [Paleo15; Mohan15], and post-processing methods
that reduce or remove rings from a reconstruction [Sijbers04; Prell09; Yan16].
The preprocessing methods detect and remove/reduce stripes in the sinogram
which, in turn, reduces the ring artifacts in the image domain. These algorithms
are typically based on Fourier domain filtering [Raven98], wavelet domain filter-
ing[Münch09], or a normalization of measurements by estimating the sensitivity
of each detector pixel [Kim14]. The post-processing methods transform the re-
constructed image from Cartesian to polar coordinates [Sijbers04] and remove
stripes using, e.g., a median filter[Prell09], a wavelet filter, or a variational model
for destriping [Yan16].
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(a) Radon transform/Sinogram of Phantom (b) Phantom

(c) Sinogram error plot, ω = 10 (d) ω = 10, Recon-
struction

(e) Sinogram error plot, ω = 102 (f) ω = 102, Recon-
struction

(g) Sinogram error plot, ω = 103 (h) ω = 103, Recon-
struction

Figure 2.3: (a) Radon transform of the phantom (b). Figures (c), (e), and (g)
show sinogram error plots that represent the flat-field estimation
errors in the sinogram domain. We generate them by subtracting
the true Radon transform, as shown in (a), from the sinogram
with flat-field errors. Figures (d), (f), and (h) shows images re-
constructed with sinograms having flat-field errors. The display
range for the sinogram error plots is [0, 1]. The display range for
phantom and the reconstructed image is [0, 0.6].
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In two recently proposed methods [Mohan15; Paleo15], ring artifact correction
is included as an intrinsic part of the reconstruction process. Motivated by the
cause of ring artifacts, which appear as stripes in the sinogram domain, the
sinogram is split into the sum of the true sinogram and a component which rep-
resents the systematic stripe errors. Although the combined ring-reduction and
reconstruction methods do take the systematic nature of the flat-field estimation
errors in the sinogram domain into account, they do not explicitly model the
source of the errors nor their statistical properties.

Existing methods for mitigating ring artifacts have been shown to work rea-
sonably well when applied to measurement data with high or acceptable SNRs.
However, we are not aware of any studies that investigate ring artifact correction
for low SNR measurements and where the intensity of X-ray beam is assumed to
be uncertain. To this end, in chapter 4, we derive a new reconstruction model
that is based on a rigorous statistical description of our model assumptions.
Unlike existing correction methods that, roughly speaking, are based on the
geometric nature of ring artifacts in either the sinogram or the reconstruction,
our approach is based on a model of one possible cause of these artifacts.

2.5 Summary

X-ray measurements are assumed to be samples of a Poisson random variable
for photon-counting detectors where the Lambert–Beer law defines the under-
lying physics behind X-ray propagation through a material. If photon flux is
high, we can approximate the statistical nature of measurements by a Gaussian
distribution. Based on these different measurement models, we can define sev-
eral reconstruction models for X-ray CT. The analytical reconstruction method
FBP and algebraic reconstruction methods do not take into account the statis-
tical nature of X-ray measurements. The Bayesian statistical methods provide
a framework to take into account the random nature of X-ray measurements.
The statistical methods based on the Poisson measurement model are mostly
suitable for problems where low-intensity measurements are unavoidable, e.g.,
in dynamic CT. Moreover, flat-field intensity estimates based on low-intensity
measurements are highly uncertain. The uncertainty may cause severe and sys-
tematic artifacts, known as ring artifacts, in the reconstructions. The existing
methods are, roughly speaking, based on the geometrical nature of these ar-
tifacts either in the image space or the sinogram space. These methods do
not consider the underlying cause of ring artifacts, i.e., the flat-field estimation
error.



Chapter 3

Dynamic X-ray Computed
Tomography

Dynamic CT is a technique to image the internal cross-section of a deforming
object without cutting and breaking it, e.g., a pill dissolving in a liquid, a beating
heart, etc. [Flohr16; Mokso15; Flohr15; McClelland13; Cnudde13; Pinzer12;
Heindel11; Bonnet03]. The deforming object may change its shape as well as
its attenuation coefficient over time. Fig. 3.1 displays some physical states of a
deforming object where the object changes its shape over time.

ut0 ut1 ut2 ut3

Figure 3.1: Image sequence of a dynamic phantom. ut denotes the attenuation
function of an object at time t.

The underlying physics behind X-ray imaging is the same whether the object
of interest is stationary or deforming during the data acquisition. However, CT
scanners, data acquisition schemes, and reconstruction models for dynamic CT
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may differ from time-invariant tomography in order to achieve a high spatio-
temporal resolution. In time-invariant tomography, the object of interest is
assumed to be stationary during the data acquisition as discussed in chapter 2.

The temporal resolution depends on the scan time, i.e., the time to acquire
projections over a full rotation for one image frame. The conventional CT system
has one X-ray source and an array of detectors. The centripetal force acting
on the rotating frame of a CT scanner limits the speed of these conventional
single-source systems, and restricts the scan rate to only 4-5 revolutions per
second [Pelc14; Halliburton12]. Dual-source CT systems increase the temporal
resolution by a factor of 2. On the other hand, a real-time tomography system
(RTT) [Thompson15; Morton98] consists of a circular array of X-ray sources.
These sources can be fired electronically to scan the object without any physical
motion of the CT system, which improves the scan rate drastically, and hence,
the temporal resolution.

(a) Sinogram
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(b) Full Cycle
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(c) Scanning Pattern

(d) (0 - T/4) (e) (T/4 - T/2) (f) (T/2 - 3T/4) (g) (3T/4 - T)

Figure 3.2: Reconstruction of a dynamic phantom using FBP algorithm with
data acquired over a full cycle. (a) shows the sinogram, (b) shows
the image reconstructed with the data collected over time (0-T)
secs, (c) illustrates the scanning pattern over a full cycle, (d) shows
the image reconstructed with a part of the data collected over
time (0-T/4) sec., and (e)-(g) display reconstructions with chunk
of projections collected over their respective time period.

Generally, we acquire projection data over a single half cycle or a single full cycle
for the time-invariant tomography, where the object is assumed to be stationary
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throughout the data acquisition. This acquisition process may not be suitable
for dynamic CT as illustrated in Fig. 3.2. Suppose, the object is deforming,
as shown in Fig. 3.1, while taking projections over a single full cycle following
the scanning pattern as shown in Fig. 3.2(c). The corresponding sinogram,
as shown in Fig. 3.2(a), does not have the sinusoidal features, which usually
arise in the sinogram for the time-invariant tomography due to the circular
scanning geometry. The motion artifacts are clearly visible in the image, as
shown in Fig. 3.2(b), reconstructed with the entire set of projections. The
reconstructions with a chunk of projections suffer from limited angle artifacts
as shown in Fig. 3.2(d)-(g). These reconstructions motivate the need of special
attention on the data acquisition scheme for dynamic CT to improve the spatio-
temporal resolution, which we will explain in the next section of this chapter.

The structural changes in the sinogram with time, as shown in Fig. 3.2(a), indi-
cate changes in the deforming object with respect to the source-detector geom-
etry. This implicitly hidden motion information in the Radon space, and local
smooth deformations over time in the image space, as shown in Fig. 3.1, motivate
modelling of time-dependent changes and incorporate it into an image recon-
struction model to enhance the spatio-temporal resolution. The joint motion
estimation and image reconstruction approach is called a motion-compensated
(MC) approach. The last section of this chapter discusses the state-of-the-art
MC reconstruction approaches.

3.1 Sampling Schemes

A data acquisition scheme aims to achieve a high spatio-temporal resolution
reconstruction from the Radon data. Therefore, the discussion about the sam-
pling of a Radon space is our primary concern. In this section, we start our
discussion with sampling schemes for time-invariant tomography, definition of
the spatial and the temporal resolution, and later introduce sampling schemes
for dynamic CT and discuss their limitations.

3.1.1 Sampling Schemes for Time-invariant Tomography

The sampling requirements for time-invariant tomography are well studied [Rat-
tey81]. To achieve aliasing free reconstruction from the samples of Radon data,
in general, we analyse the two-dimensional Fourier transform F (ωd, ωθ) of the
Radon transform p(d, θ). Suppose that the spatial support of the attenuation
function µ(x, y) is limited within a disk of radius RM and that µ(x, y) is band-
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limited within a disk of radius WM , as shown in Fig. 3.3. This is an approxi-
mation since a function can not be both space and frequency limited. In this
case, the spectral support region of F (ωd, ωθ) in the (ωd, ωθ) plane is a RMWM -
bowtie as shown in Fig. (3.3)(c). Since, the Radon-transform is periodic in θ,
its Fourier transform is discrete in ωθ-direction.

(a)

x

y

RM

(b)

ωx

ωy

WM

(c)

ωθ

ωd

WM

1 + RMWM

Figure 3.3: (a) and (b) illustrate the spatial and spectral support for the at-
tenuation function. (c) shows the spectral region of the Radon
transform, i.e., RMWM bowtie.

Following the spectral support region of F (ωd, ωθ), Shannon’s sampling theorem
says that the detector pixel spacing ∆d in the d−direction must satisfy

∆d <
π

WM
. (3.1)

Hence, the minimum number of detector pixels should be

Nr =
2RM

max ∆d
= 2RM

WM

π
. (3.2)

The Fourier transform F (ωd, ωθ) is effectively zero for |ωθ| > |RMωd|+1. There-
fore, the maximum bandwidth of the Fourier transform is 2(RMWM+1). Hence,
according to Shannon’s sampling theorem, the angular gap between two consec-
utive projections should satisfy

∆θ <
π

RMWM + 1
. (3.3)

Therefore, the minimum number of projections uniformly distributed over a half
rotation should be

M =
π

max ∆θ
= RMWM + 1 ≈ π

2
Nr. (3.4)

The sampling in Radon space is equivalent to the replica of the band region,
i.e., RMWM -bowtie in the Fourier space. In the above described approach, the
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sampling of p(θ, d) is on a rectangular grid with a gap of ∆d in d-direction and
∆θ in θ-direction. This sampling approach does not cover the entire frequency
space effectively due to the bowtie shape of band region. Whereas, the sampling
of Radon space on a hexagonal grid is an optimal sampling scheme, as shown
by Rattey and Lindgren in [Rattey81] utilizing the two-dimensional sampling
theory.

3.1.2 Spatial Resolution

Spatial resolution refers to the ability of a system to detect the smallest feature
of an image. The spatial resolution of a X-ray CT system mainly depends on
the spacing between detector pixels, the width of a detector pixel, the number
of projections, the reconstruction algorithm, and the gantry rotational speed.

In an industrial CT scanner, the length of a detector array and the spacing be-
tween detector pixels are pre-specified by manufactures, which limits the max-
imum spatial frequency, i.e.WM , observed in a reconstructed image. Further,
in the FBP algorithm, shape of the high-pass filter establishes a trade-off be-
tween spatial resolution and noise in the reconstructed image. Moreover, the
number of projections should be more than the theoretical limit as described in
(3.4) for aliasing free reconstruction, which can also limit the achievable spa-
tial resolution. For the iterative reconstruction algorithms, the regularization
term establishes a trade-off between spatial resolution and noise, which has been
studied by analysing the local impulse response of the system in [Fessler96].

In dynamic CT, the fast gantry speed is one of the most desirable requirements
to improve temporal resolution; we describe it in the next section. If the gantry
does not stop during the data acquisition and camera aperture is open through-
out the acquisition process, the measurement over a detector pixel effectively
corresponds to a cone shaped region of an object instead of a simple line-integral
along a line. The backprojection of such measurements result in a rotational
blur in the reconstruction that degrades spatial resolution of a system.

3.1.3 Temporal Resolution

Temporal resolution refers to the ability of a system to detect the smallest
change in the object with respect to time. The temporal resolution mainly
depends on the motion of an object, the measurement acquisition scheme, the
gantry rotational speed, the reconstruction algorithm, and the detector exposure
time. The conventional FBP reconstruction algorithm is still the first choice for



28 Dynamic X-ray Computed Tomography

dynamic tomography due to its computational efficiency and the well-developed
underlying theoretical understanding. Therefore, we mainly discuss temporal
resolution properties considering FBP as a basis for reconstruction algorithm.

A time-sequence of reconstructed image frames demonstrates the object evolu-
tion over time in dynamic CT. We need a large number of frames to resolve
rapid changes in the object over time. If each frame is reconstructed indepen-
dently, i.e., without compensating motion information among the frames, the
measured projections those are used to reconstruct a frame should satisfy the
sampling criteria (3.4). Therefore, the number of projections for each frame
should be Np ≥ M , uniformly distributed over a half rotation. If the gantry
rotation time between two consecutive projections is T∆θ, the total time to take
one half rotation would be

Tr = T∆θNp. (3.5)

The camera exposure time Te should be less than T∆θ, if the gantry is rotating
continuously while acquiring a projection. If To is the desired sampling time
between two image frames to achieve a high temporal resolution, then

To ≥ T∆θNp

> TeNp. (3.6)

The inequality (3.6) defines a trade-off between the exposure time and the num-
ber of projections to achieve a desirable temporal resolution. The reduction
in the number of projections to provide longer exposure time introduces sparse
view artifacts in the reconstructed image. On the other hand, the reduction in
the exposure time to acquire large number of projections decreases signal-to-
noise ratio (SNR) of the acquired measurements. In general, estimation based
on low SNR data is highly uncertain. Moreover, as discussed in chapter 2, flat-
field estimates based on low-intensity flat-field measurements may introduce
severe ring artifacts in the reconstructions. We should also note that the overall
signal-to-noise ratio of an reconstructed image depends both on the number of
projections and the exposure time[Buzug08], which is described as,

SNR ∝
√
NpTeI0 (3.7)

where I0 is the mean photon count per second and the filtered backprojection
is a method of choice for reconstruction.

Motion artifacts become prominent if a data acquisition scheme does not follow
inequality (3.6). In order to achieve the desired temporal resolution, if we per-
form reconstruction only with few projections, the limited angle artifacts appear
depending on the distribution of views over a rotation as illustrated through an
example in Fig. 3.5. In this example, we assume that the complete experiment
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runs for T sec., and desired temporal resolution is To = T/4 sec. Assuming
a fixed camera exposure time, independent of the total number of projections
per cycle, we take projections in different configurations, as shown in Fig. 3.4.
We observe in Fig. 3.5 that the artifacts are reducing with a higher coverage
of projection views over a cycle within the specified temporal resolution of T/4
sec.
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Figure 3.4: Sampling patterns for data acquisitions.

3.1.4 Sampling Schemes for Dynamic CT

We study sampling requirements for dynamic CT by analysing three-dimensional
Fourier transform of a time-varying Radon transform p(d, θ, t). However, this re-
quire the knowledge of motion beforehand, which may not be known for real life
applications. Willis and Bresler [Willis95] study the sampling of a time-varying
Radon transform for an object with a spatially localised and a periodic tempo-
ral variation. They assume that the sampling in d-direction satisfies inequality
(3.1), which reduces a 3-dimensional sampling problem into a 2-dimensional
sampling problem in the (θ, t) plane. They illustrate that the linear sampling
on a rectangular grid in the (θ, t) plane does not cover the entire Fourier space
effectively. Therefore, they propose a scrambled sampling scheme based on the
two-dimensional sampling theory, and achieve reduction in the temporal sam-
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Figure 3.5: Reconstruction of a dynamic phantom using FBP algorithm with
data acquired using different sampling patterns illustrated in
Fig. 3.4.

pling rate by a factor of four while preserving image quality. Nevertheless, the
sampling scheme is very specific to their test case, and it is difficult to see
its applicability for a general moving object and especially for an object with
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non-periodic temporal variations.

In general, it is difficult to define a sampling scheme without knowing the object
motion during the acquisition of measurements. However, we may have a rough
idea about the desired temporal and spatial resolution for an application of our
interest. Based on this information, we can determine the required gantry speed,
number of projections, etc., based on the explanation in previous sections. The
motion-compensated (MC) reconstruction approaches exploit information from
projection data collected over time to model time-dependent changes in the
object. Therefore, the uniqueness of projection data collected over time can
prove to be helpful for motion modelling. Keeping this in mind, we will discuss
two sampling schemes in the (θ, t) plane. We assumed that the data acquisition
is a time sequential process where only one projection can be taken at a time.
Moreover, we motivate projections over a full rotation instead of a half rotation
for dynamic CT applications, and these projections over a full cycle are used
to reconstruct an image frame. Projections over a full cycle allows to reduce
a gantry rotation time between the last projection for a frame and the first
projection for the subsequent frame of an image sequence.
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Figure 3.6: A distribution of projection views over time, i.e., the sampling
of (θ, t) plane, as per the progressive and the interlaced sampling
scheme.

Progressive Sampling:

In this sampling scheme, each frame has the same set of projection angles, e.g., a
set of 6 equispaced projections for each frame is same as illustrated in Fig. 3.6(a).
This scheme is well suited if each frame is reconstructed independently.

Interlaced Sampling : In this scheme, the projection angles for two consecu-
tive frames are different, but they are interleaved, as shown in Fig. 3.6(b). If an
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object is stationary for two consecutive frames, the interlaced sampling scheme
provides unique projection data that is not possible in the progressive sampling
scheme. In motion-compensated reconstructions, these unique projections pro-
vide extra information about the object, which improve the overall quality of a
time-sequence of reconstructed images.
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Figure 3.7: Illustration of the bit-reversal based interlacing scheme.

Mohan et. al. [Mohan15] proposed an interlacing scheme based on the bit-
reversal permutation as shown in Fig. 3.7. In this scheme, interlaced view angles
for the total K image frames is given by

θn =

[
nK +Br

(⌊
nK

Nθ

⌋
modK

)]
2π

Nθ
(3.8)

where Nθ = KNp is the total number of projections acquired during an exper-
iment, and Br(a) is a bit-reversed function. The authors have also shown the
potential of this scheme on real data sets. Nevertheless, this scheme has two
major drawbacks :

1. The total number of frames, i.e., K should be a power of 2.

2. This is not a fixed angle scheme. The view angles within a frame are
equidistant but the angular gap varies from one frame to another. This
could be cumbersome to implement in the real time, depending on the
flexibility in a pre-built X-ray CT scanner.

In chapter 6, we are proposing an interlaced sampling scheme based on the
family of metallic angles. It is a fixed angle scheme that does not limit the total
number of frames to be a power of 2.
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3.2 Motion Modelling - Image Registration

Image registration [Modersitzki09] is one of the techniques [Burger17; Hahn17;
Manavalan16; Schmitt02] to model time-dependent changes among image se-
quences. Image registration is a technique to automatically estimate point to
point correspondences between images. Mathematically, registration is an ill-
posed problem. A variational framework for image registration is given by

minimize
y

D(M(T, f), R) + αS(f) (3.9)

where f : R2 7→ R2 is a correspondence map between two-dimensional im-
ages R : R2 7→ R and T : R2 7→ R. The data fidelity function D measures
the similarity between a reference image R and a transformed template image
M(T, f) considering image features such as intensity, edges, etc. There may
be non-unique solutions for the correspondence map, therefore we incorporate
prior information about local deformations in the image through a regularizer
S(f) to reduce the solution space. We refer our readers to chapter 5 for a
thorough review of similarity measures and regularizers related to image reg-
istration models. Fig. 3.8 illustrates image registration of a reference image R
with a template image T . In this example, the similarity measure matches the
intensity of images such that R(x) ≈ T (f(x)).

(a) R (b) T (c) R & f (d) T & f grid

f

Figure 3.8: Each spatial point in the reference image R has a match in the
template image T such that R(x) ≈ T (f(x)). The map f is illus-
trated through arrows in Figure (c), which indicates movement of
particles from the physical state R to T . Figure (d) illustrates a
grid representation of the correspondence map f .
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3.3 Reconstruction Models for Dynamic CT

In dynamic CT, sequence of images represent the deformation of an object over
time. The spatial and temporal correlation, among image frames, is a very in-
formative prior to regularize the ill-posed dynamic CT reconstruction problem.
Here, we give a brief overview of the state-of-the-art iterative reconstruction
methods for dynamic CT. We refer readers to [Bonnet03; Rit09; Katsevich10;
Laurent12; Hahn14; Manavalan16; Hahn17] for motion-compensated analytical
algorithms for dynamic CT. Here, we are extending notations from the previ-
ous chapter and introducing a time-dependent system matrix At, data bt, and
attenuation function ut ∈ RN to explain the iterative reconstruction methods.

Guang-Hong et al. [Chen08] utilize a prior image up reconstructed from the en-
tire dynamic dataset assuming that static regions in the prior image are well
reconstructed, however, the dynamic information is lost in the prior image.
Therefore, subtraction of the image at time tk, i.e., utk from the prior image
removes all static structures, and the substracted image is sparse under some
transformation operator. Under these assumptions, they define the reconstruc-
tion model as

minimize
utk

[
δ|D(utk − up)|1 + (1− δ)|Dutk |1

]
, s.t. Atkutk = btk . (3.10)

where D is a discrete derivative operator. This method exploits temporal corre-
lation with respect to a prior image, implicitly assuming small local deformations
over time. Abascal et al. [Abascal16] enhance the model (3.10) by incorporating
a pre-computed motion information between consecutive frames.

In an another approach [Schmitt02; Tian11; Mohan15; Kazantsev15b], they
assume that a particle at time tk moves only in its local neighbourhood over
time. Under this assumption, the reconstruction model is defined as

minimize
ut1 ,...,utK

1

2

K∑
k=1

‖Atkutk − btk‖2 +

K∑
k=1

N∑
i=1

∑
{j,l}∈Ns

wijkl [(utk)i − (utl)j ]
2 (3.11)

where Ns defines a neightbourhood set around a point in both spatial and
temporal directions. The weight w generally depends on the distance between
the point of interest to a point in the neighbourhood set. Kazantsev et al.
[Kazantsev15b] enhance this approach by using a non-local temporal regularizer
and define a neighbourhood set using a prior image acquired from a different
imaging modality [Kazantsev15a]. The prior image is also used to enhance edges
that remain stationary throughout the acquisition time. Tian et al. [Tian11]
also use a non-local temporal regularizer, however, regularization is imposed
only in consecutive frames. Mory et al. [Mory16] enhance the model (3.11) by
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performing a temporal regularization along curved trajectories by incorporating
a pre-computed motion information in the reconstruction model.

Bernd et al. [Messnarz04] propose a spatio-temporal regularization approach for
the reconstruction of cardiac transmembrane potential patterns. They assume
that the potential pattern has a nondecreasing behaviour over time, which they
formulate as a linear constraint on the potential pattern.

Vincent et al. [Nieuwenhove17] introduce a motion-vector based iterative tech-
nique (MoVIT). In the first step, the MoVIT framework performs pair-wise
registration between all time frames reconstructed with a conventional alge-
braic reconstruction method. Later, they incorporate the estimated motion in
the reconstruction framework and utilize informations from neighbouring time
frames to achieve a high spatio-temporal resolution.

The above discussed approaches regularize a dynamic CT reconstruction prob-
lem either through a pre-computed motion information or by penalizing large
movements in the temporal direction. Now, we discuss two joint motion esti-
mation and image reconstruction approaches utilizing image registration tech-
niques.

ut0 ut1 ut2 ut3 ut4

ft0 ft1 ft2 ft3

Figure 3.9: Illustration of the sequential motion modelling.

We assume a one-to-one correspondence between the given two image frames.
This assumption allows us to track the position of a particle over time indis-
putably. Instead of tracking particles in all image frames simultaneously, we
generally track particles in the nearby two image frames as shown in Fig. 3.9, or
we track particles with respect to a fixed reference frame as shown in Fig. 3.10.

Following the modelling approach shown in Fig. 3.9, Mair et al. [Mair06] rep-
resented the image frame at time tk approximately in terms of the consecutive
image frame utk+1

, i.e.,

utk(x) ≈ utk+1
(ftk(x)),
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and defined the joint motion estimation and image reconstruction model as,

minimize
ut0 ,...,utK−1

,

ft0 ,...,ftK−1

1

2

K−1∑
k=0

‖Atkutk − btk‖2 +
β

2

K−2∑
k=0

‖utk − utk+1
(ftk)‖2 + α

K−2∑
k=0

E(ftk)

(3.12)

where E(f) incorporates the prior information about correspondence map f .

ut0 ut1 ut2 ut3 ut4

ft0 ft1 ft2 ft3

Figure 3.10: Illustration of the reference image based motion modelling.

For a reference frame based motion modelling, an image frame at time tk is
represented in terms of a reference image frame at time t0, i.e.,

utk(x) = ut0(ftk(x)),

and the joint motion estimation and image reconstruction model is defined as,

minimize
ut0 ,ft0 ,...,ftK−1

1

2

K−1∑
k=0

‖Atkut0(ftk)− btk‖2 + α

K−1∑
k=0

E(ftk). (3.13)

The minimization step with respect to the correspondence map for the model
(3.12) is a conventional image registration problem, where data-fidelity is en-
forced in the image space. However, the model (3.13) measures data-fidelity
in the Radon space, and requires an inverse of the correspondence map in the
minimization step with respect to the attenuation function, which we generally
compute with an iterative method. The model (3.13) reconstructs only one
image frame and represents other frames in terms of the computed correspon-
dence maps. However, the model (3.12) reconstructs all image frames as well as
correspondence maps.
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Assuming that the correspondence map among image frames is known, Su et al.
[Chun13; Chun12] have shown that the models (3.12) and (3.13) behave similarly
as β →∞; and they have studied noise and spatial resolution properties of these
reconstruction models.

3.4 Summary

In dynamic CT, we aim to reconstruct a sequence of images that represents a
deforming object over time. We desire to achieve a high spatio-temporal reso-
lution, but in practice, it is difficult to detect both rapid changes and smallest
features of a deforming object simultaneously. This resolution trade-off is mainly
because of the trade-off between the detector acquisition time and the number
of projections in the allotted time for an experiment. Moreover, distribution
of projection views over time around the object in a CT scanner also plays a
role to improve the spatial-temporal resolution. This is important especially for
the reconstruction models that exploit motion information from nearby frames.
We introduced two state-of-the-art sampling schemes, i.e., progressive and in-
terlacing sampling schemes, and point out their limitations. In the end, we
discussed a few state-of-the-art reconstruction models for dynamic CT. These
models regularize a dynamic reconstruction problem through a pre-computed
motion information, by penalizing large movements in the nearby frames, or by
estimating motion along with the unknown object.
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Chapter 4

A Convex Reconstruction
Model for X-ray Tomographic

Imaging with Uncertain
Flat-fields

The entire content of this chapter has been published in the IEEE journal. The
text, tables, and figures in this chapter are the same as it is in the published
paper. The published paper has images in the compressed format that hide some
of the important information related to our findings. Therefore, we use uncom-
pressed version of these images in this chapter. Please also note that we have
reformatted the content of the paper just to align this chapter with rest of the
thesis.

c© [2018] IEEE. Reprinted, with permission, from [Hari Om Aggrawal, Martin
Skovgaard Andersen, Sean Rose, and Emil Y. Sidky. “A Convex Reconstruc-
tion Model for X-ray Tomographic Imaging with Uncertain Flat-fields”. IEEE
Transactions on Computational Imaging, Volume 4, Issue 1, March 2018.]

Classical methods for X-ray computed tomography are based on the assump-
tion that the X-ray source intensity is known, but in practice, the intensity is
measured and hence uncertain. Under normal operating conditions, when the
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exposure time is sufficiently high, this kind of uncertainty typically has a neg-
ligible effect on the reconstruction quality. However, in time- or dose-limited
applications such as dynamic CT, this uncertainty may cause severe and sys-
tematic artifacts known as ring artifacts. Existing methods for mitigating ring
artifacts have been shown to work reasonably well when applied to measurement
data with high or acceptable SNRs. However, we are not aware of any studies
that investigate ring artifact correction for low SNR measurements and where
the intensity of X-ray beam is assumed to be uncertain. To this end, we derive
a new reconstruction model that is based on a rigorous statistical description
of our model assumptions. Unlike existing correction methods that, roughly
speaking, are based on the geometric nature of ring artifacts in either the sino-
gram or the reconstruction, our approach is based on a model of a fundamental
cause of these artifacts. The resulting reconstruction method jointly estimates
the flat-field and the attenuation image, and we show that the estimation prob-
lem can be solved efficiently by solving a convex optimization problem. We also
derive a quadratic approximation model which is similar to an existing weighted
least-squares reconstruction model.

Section 4.1 introduces our model assumptions and reviews some existing ap-
proaches to CT reconstruction based on low SNR measurements. We illustrate
the sensitivity of these existing methods to flat-field intensity estimation errors.
Section 4.2 proposes a new reconstruction model and discusses different param-
eter selection strategies. We describe our numerical implementation in Section
4.3, and we validate the proposed model based on simulated data as well as real
tomographic measurements in Section 4.4. Section 4.5 concludes our findings.

4.1 Conventional Reconstruction Approach

4.1.1 System and Measurement Model

The Lambert–Beer law describes how an X-ray beam is attenuated as it travels
through an object that is characterized by a spatial attenuation function µ(x).
Specifically, the incident intensity of an X-ray beam on a detector is given by

I ≈ I0 exp

(
−
∫
l

µ(x) dx

)
(4.1)

where I0 is the intensity of the X-ray source, and l denotes the line segment
between the source and a detector. This description does not take the detector
efficiency and the statistical nature of the photon arrival process into account.
For photon-counting detectors, it is common to assume that the photon arrival
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process is a Poisson process, and each measurement is assumed to be a sample
from a Poisson distribution whose mean is prescribed by the Lambert–Beer
law. Here we will consider a two-dimensional geometry where p projections
are acquired using a one-dimensional detector array with r detector elements.
We will use the notation yij to denote the measurement obtained with detector
element i and projection j, and we will assume that the ith detector element
has efficiency ηi ∈ (0, 1] such that the effective intensity is vi = ηiI0. Thus, with
the assumption that the arrival process is Poisson process, yij is a realization
of a random variable yij which, conditioned on µ and vi, is a Poisson random
variable whose mean is prescribed by the Lambert–Beer law, i.e.,

yij | µ, vi ∼ Poisson

(
vi exp

(
−
∫
lij

µ(x) dx

))
(4.2)

where lij notes the line segment between the ith detector element and the source
for projection angle j. For ease of notation, we define a matrix random variable
Y of size r × p with elements yij , and similarly, the r × p matrix Y denotes a
realization of Y and y = vec(Y ).

The attenuation function µ(x) may be discretized by using a parameterization

µ(x) =

n∑
k=1

ukµk(x) (4.3)

where µk(x) is one of n basis functions (e.g., a pixel or voxel basis), and u ∈ Rn
is a vector of unknowns (e.g., pixel or voxel values). With this parameterization,
the line integrals in (4.2) can be expressed as∫

lij

µ(x) dx = eTi Aju

where the elements of the matrix Aj ∈ Rr×n are given by

(Aj)ik =

∫
lij

µk(x) dx,

and hence the columns of Y satisfy

E[yj |u, v] = diag(v) exp(−Aju), j = 1, . . . , p

where v = (v1, . . . , vr).

In practice, the vector v is unknown and must be measured. As mentioned
in the introduction, the measurements of v are often referred to as flat-field
measurements and are simply measurements obtained without any object in the
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CT scanner. We will assume that s flat-field measurements are acquired for
each detector element based on the flat-field measuring model

fij | vi ∼ Poisson (vi) (4.4)

for i = 1, . . . , r and j = 1, . . . , s, and F denotes a r × s matrix random variable
with elements fij . As for the measurements Y , the matrix F ∈ Rr×s denotes a
realization of F.

4.1.2 Maximum Likelihood Estimation

Given the flat-field measurements F , a maximum likelihood (ML) estimate of v
is given by

v̂f = argmin
v
{− log P(F | v)} (4.5)

= argmin
v

{
s1T v − 1TFT log(v)

}
=

1

s
F1,

i.e., v̂f is simply the arithmetic average of the s flat-field measurements. This
estimate can be used to compute an approximate ML estimate of the vector u
which is given by

ûy = argmin
u
{− log P(Y | u, v̂f)} (4.6)

= argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu
}

where A ∈ Rrp×n is defined as A = [AT1 · · · ATp ]T . The estimation problem
(4.6) is a convex optimization problem, and it is essentially an approximate
ML estimation problem since with our model assumptions, the true likelihood
P(Y | u, v) is a function of both u and v. We will return to this issue in the
next section.

If y is positive, a quadratic approximation of (4.6) can be obtained by means of
a second-order Taylor expansion of the likelihood function [Sauer93], and this
yields the following weighted least-squares objective function

1

2
‖diag(y)1/2(Au− b)‖22 (4.7)

where b = 1 ⊗ log(v̂f) − log(y). Notice that if A has full rank and rp ≤ n,
both (4.6) and the quadratic approximation (4.7) reduce to the problem of
solving the consistent system of equations Au = b, but the two problems are
generally different when the system of equations Au = b is inconsistent. The
noise properties of reconstructions based on the weighted least-squares objective
(4.7) have been studied in [Rose15].
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4.1.3 The Effect of Flat-field Estimation Errors

The flat-field estimate v̂f in (4.5) satisfies E[v̂f ] = v, and hence it is an unbiased
estimate. However, v̂f is itself a random variable with covariance (1/s)diag(v),
and the flat-field estimation error may lead to artifacts in the reconstruction. To
study how flat-field estimation errors influence the reconstruction, we now con-
sider a simplified model based on Gaussian approximations. Specifically, we as-
sume that (v̂f)i|vi ∼ N (vi, s

−1vi) and yij |vi, u ∼ N (vi exp(−eTi Aju), vi exp(−eTi Aju)).
With these assumptions, bij = log((v̂f)i)− log(yij) can be approximated by lin-
earizing each of the log terms around the mean of their arguments, i.e.,

bij ≈ log(vi) +
(v̂f)i − vi

vi
− log(E[yij ])−

yij − E[yij ]

E[yij ]

= eTi Aju+ zi + wij

for i = 1, . . . , r and j = 1, . . . , p, and where

zi = ((v̂f)i − vi)/vi, zi ∼ N (0, (svi)
−1)

and
wij = (yij − E[yij ])/E[yij ], wij ∼ N (0, v−1

i exp(eTi Aju)).

The terms zi arise because of the flat-field estimation errors, and the terms wij

represent the effect of measurement noise. If we define z = (z1, . . . , zr) and
w = vec(W) where W is the r × p matrix with elements wij , then

b ≈ Au+ 1⊗ z + w. (4.8)

Not surprisingly, this shows that flat-field estimation errors affect all projections,
and hence give rise to structured errors.

The linear approximation reaffirms that the variance of the flat-field errors is
inversely proportional to the flat-field intensity and the number of flat-field
measurements s. Thus, if s is sufficiently large, the flat-field estimation errors
play a negligible role. However, a twofold reduction of the flat-field error-to-noise
ratio √

E[z2
i ]

E[w2
ij ]

=
1√

s exp(−eTi Aju)

requires a fourfold increase in the number of flat-field samples, and hence it may
require many samples to obtain a sufficiently small flat-field error-to-noise ratio.

We now demonstrate the effect of flat-field estimation errors by considering
the behavior of reconstructions based on (4.6). We will use a constant flat-field
v = ω1 for ω > 0 to generate a set of measurements according to the model (4.2)
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with r = 200 detector elements and p = 720 parallel beam projections covering
a full rotation. For the reconstruction we use the flat-field ML estimate v̂f ,
as defined in (4.5), where only one flat-field sample (s = 1) is acquired for each
detector element based on (4.4).

Our object u, shown in Fig. 4.1a, consists of three squares of different sizes
where the attenuation of the innermost square is 0.5 cm−1, the enclosing square
has attenuation 0.25 cm−1, and the outermost square has no attenuation. The
domain size is 1 cm, and the reconstruction grid is 128 × 128 pixels. Fig. 4.1
shows three reconstructions based on (4.6) with different values of the parameter
ω. The effect of the flat-field error appears as a ring in the reconstructions,
and it is clear that the severity of both noise and the ring in the reconstruction
decreases as the flat-field intensity is increased. In the next section, we propose
and investigate a new reconstruction model that takes a statistical model of the
flat-field into account.

The effect of a flat-field estimation error on the reconstruction may also be
analyzed by means of an analytic reconstruction of the sinogram hθ(t) = δ(t−t0)
where t0 6= 0 is a given constant. This corresponds to a “line” in the sinogram.
The function hθ(t) is a radial function (i.e., it does not depend on θ), but it is not
the Radon transform of a function since hθ(t) 6= hθ+π(−t). As a consequence,
the Fourier slice theorem does not hold. However, we may still compute a
reconstruction using filtered backprojection. The reconstruction µ(x) is itself a
radial function, and if we let x = ρnφ where nφ = (cosφ, sinφ) such that |ρ| is
the distance to the origin, we obtain the expression [Kak01]

µ(ρnφ) =
1

2

∫ π

−π

∫ ∞
−∞

Hθ(ζ)|ζ|e−2πε|ζ|ei2πζρn
T
φnθ dζ dθ

= π

∫ ∞
−∞

Hθ(ζ)|ζ|e−2πε|ζ|J0(2πζρ) dζ

= π

∫ ∞
0

[Hθ(ζ) +Hθ(−ζ)] e−2πεζζJ0(2πζρ) dζ

where J0 denotes the zeroth-order Bessel function of the first kind, Hθ(ζ) =
e−i2πζt0 is the Fourier transform of hθ(t), and |ζ|e−2πε|ζ| is an apodizing filter
with parameter ε > 0. Using the Hankel transform pair (20) in [Bateman54,
p. 9], we obtain the closed-form expression

µ̃(ρ) =
1

4π

(
σ

(σ2 + ρ2)3/2
+

σ̄

(σ̄2 + ρ2)3/2

)
(4.9)

where σ = ε+it0 and µ̃(ρ) = µ(ρnφ) . Fig. 4.2 shows three examples of what this
function may look like. It is clear from the figure that a systematic error in the
sinogram in the form of a “line” will appear as spikes in the radial reconstruction.
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(a) Phantom (b) ω = 103 photons

(c) ω = 104 photons (d) ω = 105 photons

Figure 4.1: Phantom (a) and reconstructions (b), (c), and (d), based on (4.6)
with flat-field estimation errors. The display range for each of the
images is [0, 0.6].
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Figure 4.2: Examples of radial profile of reconstruction of hθ(t) for three dif-
ferent values of t0 (0.5, 1.0, and 1.5) and ε = 0.05.

In particular, the reconstruction will have two “rings” of opposite sign near
ρ = t0, corresponding to the positive and negative peaks in the profile µ̃(ρ).
The extrema of µ̃(ρ) (i.e., the spike magnitudes) depend on both t0 and ε. The
dotted curves in the figure provide an envelope of the extrema for ε = 0.05, and
it shows that the magnitude of a spike is large when |t0| is small and vice versa.
Our analysis of the extrema of µ̃(ρ), which is included in Appendix 4.A, shows
that they are approximately inversely proportional to

√
ε3|t0| when |t0| � ε.

Moreover, µ̃(ρ) may have a significant offset near ρ = 0, as is the case for the
example with t0 = 0.5 in Fig. 4.2.

4.1.4 Including Prior Information

If the prior probability density P(u) is assumed to be known, a so-called maxi-
mum a posteriori (MAP) estimate can be expressed as

ûmap = argmin
u
{− log P(u | y, v)} (4.10)

where, according to Bayes’ rule, the posterior probability density P(u|y, v) sat-
isfies

P(u | y, v) ∝ P(y | u, v)P(u). (4.11)
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Again, since v is generally unknown, an approximate MAP (AMAP) estimate
can be obtained by maximizing an approximation of the posterior distribution,
i.e.,

ûamap = argmin
u
{− log P(u | y, v̂f)} . (4.12)

We will restrict our attention to priors of the form

P(u | γ) ∝ e−γφ(u) (4.13)

where φ(u) is a convex function and γ > 0 is a hyperparameter. With this prior,
the AMAP estimation problem can be expressed as

ûamap = argmin
u

{
(1⊗ v̂f)

T exp(−Au) + yTAu+ γφ(u)
}

(4.14)

which is a convex optimization problem. Alternatively, using the quadratic
approximation (4.7) in place of the log-likelihood function, we obtain the regu-
larized weighted least-squares problem

ûwls = argmin
u

{
1

2
‖diag(y)1/2(Au− b)‖22 + γφ(u)

}
(4.15)

as an approximation to the AMAP estimation problem.

4.2 Joint Reconstruction Approach

We now turn to the main contribution of this paper, namely a model for jointly
estimating the flat-field v as well as the absorption image u. Recall from the
example in section 4.1.3 that the approximate ML model (4.6) may lead to ring
artifacts. As will be evident from our numerical experiments in section 4.4, the
approximate MAP model (4.14) suffers the same drawback. To mitigate this,
we consider joint MAP estimation of u and v. This approach is motivated
by the fact that the measurements Y contain information about both u and v.
Indeed, given u, an ML estimate of v can be computed as

v̂y(u) = argmin
v
{− log P(Y | u, v)} (4.16)

= diag

 p∑
j=1

exp(−Aju)

−1

Y 1. (4.17)
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4.2.1 MAP Estimation Problem

With the model assumptions described in 4.1.1 and given a flat-field prior
P(v|α, β), the joint posterior distribution of the unknown parameters u and
v can be expressed as

P(u, v | Y, F ) ∝ P(Y, F | u, v)P(u | γ)P(v | α, β)

where P(Y, F |u, v) = P(Y |u, v)P(F |v), and α ∈ Rr and β ∈ Rr are hyperpa-
rameters associated with the flat-field prior. Here we will assume that vi and
vj , i 6= j are independent, and the flat-field prior is vi|αi, βi ∼ Gamma(αi, βi)
for i = 1, . . . , r, i.e.,

P(vi | αi, βi) =
βαii

Γ(αi)
vαi−1
i exp(−βivi).

The Gamma prior is chosen because of computational convenience; it is the so-
called conjugate prior for the Poisson likelihood function, and as a consequence,
the posterior distribution of v given u is itself a Gamma distribution. For the
Gamma distribution, the hyperparameter αi is commonly referred to as the
shape, and βi is referred to as the rate. The corresponding MAP estimation
problem can be expressed as

(û, v̂) = argmin
(u,v)

{− log P(u, v | Y, F )} (4.18)

= argmin
(u,v)

{J(u, v) + γφ(u)}

where

J(u, v) = vT d(u) + yTAu− cT log(v) (4.19)

and

c = F1 + Y 1 + α− 1, d(u) = s1 +

p∑
j=1

exp(−Aju) + β. (4.20)

The function J(u, v) is convex in u given v and vice versa, but it is not jointly
convex in u and v. However, by setting the gradient of J(u, v) with respect to v
equal to zero, we obtain the first-order optimality condition v̂(u) = diag(d(u))−1c.
This allows us to eliminate v from the estimation problem (4.18), i.e.,

J(u, v̂(u)) ∝ yTAu+ cT log(d(u)),

which is a convex function of u. Thus, the problem (4.18) is equivalent to the
following convex reconstruction model

û = argmin
u

{
yTAu+ cT log(d(u)) + γφ(u)

}
(4.21)
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with the flat-field estimate v̂ given by

v̂ = diag(d(û))−1c. (4.22)

We note that v̂ has an interesting interpretation: each element of v̂ can be
expressed as a convex combination of three independent estimates, i.e.,

v̂ = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β) (4.23)

where θ1, θ2, θ3 ∈ Rr+, θ1 + θ2 + θ3 = 1, are parameters that depend on both
data and û, α, and β. The ML estimate v̂f , defined in (4.5), is based on the
flat-field measurements F , the estimate v̂y(û) is based on the measurements Y
and defined in (4.16), and the estimate v̂pr(α, β) = diag(β)−1(α−1) is based on
the flat-field prior; see Appendix 4.B for further details on this interpretation.

4.2.2 Choosing The Hyperparameters

The estimation problem (4.21) depends on the flat-field hyperparameters α and
β. We now discuss different ways to choose these hyperparameters.

4.2.2.1 Uniform Positive Prior

The simplest prior is perhaps the uniform positive (UP) prior which is obtained
by setting αi = 1 and βi = 0 for i = 1, . . . , r. In the present case, this corre-
sponds to simply omitting the prior P(v|α, β) from the model, and hence the
flat-field estimates v̂(u) become convex combinations of only two estimates in-
stead of three. This is an improper prior since it does not integrate to one.

4.2.2.2 Jeffreys Prior

The Jeffreys prior (JP) for the Poisson distribution is p(vi|αi, βi) ∝ 1/
√
vi which

is obtained by letting αi = 0.5 and βi = 0. This is also an improper prior.

4.2.2.3 Type-II ML Estimation

The flat-field measurements can be used to estimate the hyperparameters by
maximizing the marginal probability of fi1, . . . , fis given the hyperparameters
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αi and βi, i.e.,

(α̂i, β̂i) = argmin
(αi,βi)

{− log P(fi1, . . . , fis | αi, βi)} . (4.24)

This is known as type-II ML estimation or empirical Bayes estimation [Berger85].
As shown in Appendix 4.C, this approach leads to the AMAP model, i.e., a zero-
variance prior with mean v̂f .

4.2.2.4 Flat-field Emphasizing Prior

Recall that the flat-field estimate v̂(u) can be expressed as convex combinations
of three estimates. Specifically,

v̂i(u) =
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

αi − 1

βi
(4.25)

where τi(u) =
∑p
j=1 exp(−eTi Aju). If we set the mode of the Gamma prior (i.e.,

(αi− 1)/βi) equal to the flat-field ML estimate (v̂f)i by letting αi = 1 + βi(v̂f)i,
we obtain the estimate

v̂i(u) =
s+ βi
di(u)

(v̂f)i +
τi(u)

di(u)
(v̂y)i (4.26)

which is a convex combination of two estimates. It is easy to verify that v̂i(u)→
(v̂f)i as β →∞, and with βi = 0, the estimate v̂i(u) is equivalent to the estimate
obtained with the UP prior. Thus, choosing βi > 0 and αi = 1 + βi(v̂f)i allows
us to emphasize the flat-field ML estimate (v̂f)i. This is consistent with the
fact that the parameter βi is the rate parameter associated with the Gamma
distribution: the larger the rate, the more concentrated the distibution is around
its mode. This is illustrated in Fig. 4.3. We call this corresponding prior the
flat-field emphasizing (FE) prior.

4.2.3 Quadratic Approximation

A quadratic approximation of the first two terms in (4.21) can be derived by
means of a second-order Taylor expansion with respect to Au. Substituting
y for (I ⊗ diag(v̂(u))) exp(−Au), we obtain the following approximate MAP
estimation problem

ûswls = argmin
u

{
1

2
‖Au− b‖2

Σ̂−1
b

+ γφ(u)

}
(4.27)
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Figure 4.3: Gamma distributions with hyperparameters βi and αi = 1+(v̂f)iβi
for (v̂f)i = 10 and βi ∈ {0.1, 1.0, 5.0}.

where the covariance matrix Σ̂b is defined as

Σ̂b = (11T )⊗ diag(sv̂f + α− 1)−1 + diag(y)−1. (4.28)

This is also the covariance matrix associated with b in the linear approximation
(4.8). Note that the weighted least-squares data fidelity term takes the system-
atic errors induced by flat-field estimation errors into account without explicitly
modeling the flat-field, and hence we label this a regularized stripe-weighted
least-squares (SWLS) problem. The model depends on the hyperparameter
vector α, which appears in the covariance matrix, but β does not appear in the
model.

4.3 Implementation

The MAP estimation problems (4.14) and (4.21) as well as the WLS (4.15) and
SWLS (4.27) quadratic approximations are all convex problems that can be
solved with a wide range of numerical optimization methods. Here we will focus
on simple first-order methods which are suitable for large-scale problems.

4.3.1 Attenuation Priors

Before we describe our implementation of the different reconstruction meth-
ods, we briefly discuss two attenuation priors of the form (4.13), namely the
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nonnegativity prior (corresponding to nonnegativity constraints ui ≥ 0), and a
combination of the nonnegativity prior and total variation (TV) regularization
[Rudin92]. Both of these priors can be combined with the existing AMAP model
(4.14), the proposed model (4.21), the WLS model (4.15) and the SWLS model
(4.27).

4.3.1.1 Nonnegativity

The nonnegativity constraints can be expressed as φ(u) = I+(u) where I+(u)
denotes the indicator function of the nonnegative orthant, i.e., I+(u) = 0 if and
only if u is a nonnegative vector, and otherwise I+(u) =∞.

4.3.1.2 Nonnegativity and TV

The combination of nonnegativity constraints and TV may be expressed as

φ(u) = I+(u) + TVδ(u)

where TVδ(u) =
∑n
i=1 ξδ(‖Diu‖2) is a differentiable TV-approximation, ξδ de-

notes the Huber-norm

ξδ(t) =

{
(t)2/(2δ) |t| ≤ δ
|t| − δ/2 otherwise

with parameter δ, and Diu is a finite-difference approximation of the gradient
at pixel i. We will use a pixel basis corresponding to an M × N grid (i.e.,
n = MN). Specifically, we define

Di =

[
eTi (IN ⊗ D̄M )
eTi (D̄N ⊗ IM )

]
where IM and IN are identity matrices, and D̄M and D̄N are square difference
matrices of order M and N , respectively, and of the form

1 −1
. . . . . .

1 −1
0


where the last row is zero, corresponding to Neumann boundary conditions.

The function TVδ(u) has a Lipschitz continuous gradient with constant Ltv(δ) =

‖D‖22/δ where D =
[
DT

1 · · ·DT
n

]T .
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4.3.2 Reconstruction Models

We now consider five different reconstruction models of the form

minimize Ji(u) + γφ(u), i = 1, . . . , 5, (4.29)

where Ji(u) is based on either (4.10), (4.14), (4.21), (4.15) or (4.27).

4.3.2.1 Baseline and AMAP Estimation

The reconstruction model (4.10) requires the true flat-field v which is not avail-
able in practice. However, the model may be used to compute a baseline re-
construction in simulation studies. The baseline reconstruction problem corre-
sponds to J1(u) = J(u, v) where the true flat-field v is assumed to be known. If
we replace v by v̂f , we obtain the AMAP model (4.14) with objective J2(u) =
J(u, v̂f).

To solve the reconstruction problem (4.29) using a first-order method, we need
the gradient of J(u, v) with respect to u, i.e.,

∇uJ(u, v) = AT (y − ŷ(u, v)) (4.30)

where ŷ(u, v) = (I ⊗ diag(v)) exp(−Au). It is easy to verify that the gradient
∇uJ(u, v) is Lipschitz continuous on the nonnegative orthant since the norm of
the Hessian

∇2
uJ(u, v) = ATdiag(ŷ(u, v))A

is bounded for u ≥ 0 and with v fixed. We will use the Lipschitz constants
L1 = maxi{vi}‖A‖22 and L2 = maxi{(v̂f)i}‖A‖22.

4.3.2.2 Joint MAP Estimation

The MAP estimation problem (4.21) is a special case of (4.29) if we let J3(u) =
J(u, v̂(u)). The gradient of J3(u) is

∇J3(u) = AT y +Dd(u)T v̂(u) (4.31)

= AT (y − ŷ(u, v̂(u)))

where Dd(u) = −
∑p
j=1 diag(exp(−Aju))Aj denotes the Jacobian matrix of

d(u). Comparing with (4.30), we see that the only difference is that the residual
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y− ŷ(u, v̂(u)) is based on the flat-field estimate v̂(u) instead of the true flat-field
v or the ML estimate v̂f .

To derive the Hessian of J3(u), note that

cT log(d(u)) =

r∑
i=1

ci log(di(u))

where di(u) = s +
∑p
j=1 exp(−eTi Aju) + βi. This implies that the Hessian can

be expressed as
r∑
i=1

ci

(
∇2di(u)

di(u)
− ∇di(u)∇di(u)T

di(u)2

)
.

Now let Πi = I ⊗ eTi such that Πiy = Y T ei corresponds to the ith row of Y ,
and define a permutation matrix Π = [ΠT

1 · · · ΠT
r ]T . This allows us to express

the Hessian ∇2J3(u) as

∇2J3(u) = ATΠTblkdiag(B1(u), . . . , Br(u))ΠA (4.32)

where Bi(u) = diag(Πiŷ) − 1
ci

Πiŷŷ
TΠT

i , and where ŷ is used as shorthand for
ŷ(u, v̂(u)). (We remark that v̂(u) depends on both α and β, and consequently,
so does the Hessian ∇2J3(u).) It follows that

‖∇2J3(u)‖2 ≤ ‖ATdiag(y)A‖2

which implies that∇J3(u) is Lipschitz continuous with constant L3 = ‖ATdiag(y)A‖2.

4.3.2.3 WLS Estimation

The quadratic approximation (4.15) corresponds to (4.29) with J4(u) = 1
2‖Au−

b‖2
Σ̂−1

b

and Σ̂b = diag(y)−1. The gradient of J4(u) is

∇J4(u) = ATΣ−1
b (Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b A‖2.

4.3.2.4 Regularized SWLS

The quadratic approximation (4.27) corresponds to (4.29) with J5(u) = 1
2‖Au−

b‖2
Σ̂−1

b

and

Σ̂b = ΠT
[
diag(Πy)−1 + diag(sv̂f + α− 1)−1 ⊗ (11T )

]
Π.



4.3 Implementation 55

Thus, Σ̂b is a symmetric permutation of a block-diagonal matrix with diagonal-
plus-rank-one blocks, and hence matrix-vector products with Σ̂−1

b can be effi-
ciently evaluated using theWoodbury identity, i.e., Σ̂−1

b = ΠTblkdiag(S1, . . . , Sr)Π
where

Si = diag(Πiy)− 1

s(v̂f)i + eTi Y 1 + αi − 1
Πiyy

TΠT
i . (4.33)

This allows us to evaluate the gradient as

∇J5(u) = ATΣ−1
b (Au− b)

which is Lipschitz continuous with constant ‖AT Σ̂−1
b A‖2.

It is instructive to compare the SWLS model to the WLS model considered
in [Mohan15]. This model implicitly includes the flat-fields using the following
objective function

J6(u, z) =
1

2
‖diag(y)1/2(Au− b+ 1⊗ z)‖22 +

λ

2
‖z‖22 (4.34)

where z ∈ Rr is an auxiliary variable that can be thought of as the relative flat-
field error (cf. the analysis in Section 4.1.3). Taking the gradient with respect to
z and setting it equal to zero yields z = diag(Y 1+λ1)−1(1T⊗I)diag(y)(b−Au),
and using this expression in (4.34) yields

J6(u) =
1

2
‖Au− b‖2

Σ̂−1 (4.35)

where Σ̂−1 = ΠTblkdiag(S̄1, . . . , S̄r)Π and

S̄i = diag(Πiy)− 1

eTi Y 1 + λ
Πiyy

TΠT
i . (4.36)

The blocks S̄i clearly resemble the blocks Si from the SWLS model in (4.33):
the only difference is the scalar weight in front of the rank-1 term in each of the r
blocks. In particular, notice that the weights in the SWLS model include infor-
mation derived from all measurements as well as the flat-field prior. Moreover,
the parameter λ in (4.36) plays a similar role as the flat-field hyperparameters
α in (4.33), but the SWLS model is more general and flexible because it allows
the use of a different hyperparameter αi for each of the r blocks.

4.3.3 Algorithm

The functions J1(u), . . . , J5(u) are all differentiable with Lipschitz continuous
gradients on the nonnegative orthant, and hence we can apply a proximal gra-
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dient method which is suitable for minimizing problems of the form

minimize g(u) + h(u).

Here g : Rn → R is convex with a Lipschitz continuous gradient with Lipschitz
constant L, h : Rn → R is convex, and the prox-operator

proxth(ū) = argmin
u

{
th(u) +

1

2
‖u− ū‖22

}
is assumed to be cheap to evaluate. We will define g(u) = Ji(u) + γTVδ(u) and
h(u) = I+(u), and hence the Lipschitz constant is given by L = Li + γLtv(δ).
Given a starting point u(0) and a fixed number of iterations K, the algorithm
can be summarized as

u(k) = proxth(u(k−1) − t∇g(u(k−1))), k = 1, 2, . . . ,K

where t ∈ (0, 2/L) is the step size and proxth(ū) = max(0, ū) is the pro-
jection onto the nonnegative orthant. With this step size, the method is a
descent method. The Lipschitz constant L can be estimated without an ex-
plicit representation of A or D by means of the power iteration algorithm. Our
MATLAB implementation of the method is available for download at https:
//github.com/hariagr/R2CT.

4.4 Numerical Experiments

4.4.1 Simulation Study

To evaluate the proposed reconstruction models, we conducted a series of ex-
periments in MATLAB based on simulated data. In these experiments, we used
a parallel beam geometry with p = 720 equidistant projection angles covering
half a rotation, and a 2 cm wide photon counting detector array with r = 512
detector elements. To model a non-uniform detection efficiency, the elements
of the flat-field vector v were drawn from a Poisson distribution with mean I0.
We used s = 5 measurements of the flat-field which were generated according
to (4.4), and the measurements Y were generated according to (4.2) using a
2N × 2N pixel discretization of a 2D phantom defined on a 4 cm2 square. To
avoid inverse crimes, we computed our reconstructions on an N ×N (N = 512)
pixel grid with a circular mask. The value of the TV-smoothing parameter δ was
0.01 cm−1 in all experiments with the TV-prior. We used as step size t = 1.8/L,
and we used the ASTRA Toolbox [Aarle15] (version 1.7.1beta) to compute fil-
tered backprojection (FBP) reconstructions and to implicitly compute products

https://github.com/hariagr/R2CT
https://github.com/hariagr/R2CT
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with A and AT on a GPU. We generated the phantoms using the AIR Tools
package [Hansen12] (version 1.3), and we used the method outlined in Section
4.3.3 to numerically solve the reconstruction problems. As a remark, we note
that the ASTRA GPU code for backprojection (i.e., multiplication by AT ) is
not an exact adjoint of the forward operator (multiplication by A), and this
may introduce small errors in the gradient computations. However, it is signifi-
cantly faster than matched implementations, and we did not see any noticeable
differences in reconstruction quality when using the exact adjoint.

As initial guess we used a vector of zeros, and we used a fixed number of iter-
ations as stopping criteria (500 iterations for reconstructions without the TV-
prior and 1,500 iterations for reconstructions with the TV-prior). We determine
the parameter γ for the TV-prior based on the subjective visualization. As
flat-field prior P(v|α, β) we used αi = 1 + βi(v̂f)i and βi ≥ 0 (corresponding to
the UP flat-field prior if βi = 0 and the FE prior if βi > 0), and for the at-
tenuation prior P(u|γ) we used either nonnegativity or total variation combined
with nonnegativity. Note that SWLS only depends on α, but since we also use
αi = 1 + βi(v̂f)i for SWLS, we report the value of β in the experiments.

To quantitatively compare the quality of reconstructions, we report the relative
attenuation error (RAE)

erel
u (û) = 100 · ‖û− u‖2

‖u‖2
,

the relative flat-field error (RFE)

erel
v (v̂) = 100 · ‖v̂ − v‖2

‖v‖2
,

the structural similarity (SSIM) index1 [Wang04], and a “ring ratio” (RR), de-
fined as

‖ψv(v̂(û))‖F /‖ψv(v̂f)‖F
with ψv(v̂) defined as

ψv(v̂) = FBP(diag(v)−1(v̂ − v)1T ) (4.37)

and where FBP denotes the filtered backprojection reconstruction method. In
other words, ψv(v̂) is the FBP reconstruction of the sinogram stripes due to flat-
field estimation errors, and hence the norm ‖ψv(v̂)‖F quantifies how severely
the flat-field estimation errors affect the reconstruction. Thus, the RR can be
viewed as an indication of the expected ring artifact reduction if we were to use

1We used the MATLAB ssim function with the radius parameter equal to 0.2 for recon-
structions without the TV-prior and equal to 2.0 for reconstructions with the TV-prior.
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Figure 4.4: Phantom and reconstructions based on simulated low-intensity
measurements. The display range for the images is 0 to 1.2 cm−1.
The reconstructions with the TV-prior were computed with γ = 3.
The insets are blow-ups of the reconstructions at the isocenter.
The number of iterations was 500 for reconstructions without TV
prior and 1,500 for reconstructions with TV prior.

the flat-field estimate v̂(û) instead of the ML estimate v̂f (smaller is better) to
compute a reconstruction. Recall that all but the JMAP reconstruction model
are based on the ML estimate v̂f , so for the other models, the RFE and the
RR simply reflect what we obtain if we were to use the reconstruction û to
compute a new flat-field estimate v̂(û), using (4.22). We used α = 1 and β = 0
to compute v̂(û) for all but the JMAP and SWLS reconstruction models.

4.4.1.1 Low Intensity

In our first experiment, we used a phantom based on the “grains” phantom from
AIR Tools, shown in the upper left corner of Fig. 4.4. We applied a circular mask
of radius 0.8 cm to obtain a phantom that is fully contained by the reconstruction
grid. We used I0 = 500 in this experiment, corresponding to approximately 500
photons per detector element per projection. As a result, the SNR is relatively
low. Estimates based on low SNR measurements generally have a high variance,
and hence a good model and strong priors are of paramount importance. The
reconstructions shown in Fig. 4.4 demonstrate this. The baseline reconstructions
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Model
Without TV Without TV TV γ = 3

(full domain, 2×2 cm) (disc, radius 0.8 cm) (disc, radius 0.8 cm)
RAE SSIM RFE RR RAE SSIM RFE RR RAE SSIM RFE RR

Baseline FBP 71.9 0.62 0.2 0.03 65.7 0.77 0.2 0.03 - - - -
FBP 101.2 0.55 3.5 0.66 94.7 0.70 3.6 0.66 - - - -
P-FBP 73.1 0.62 1.8 0.20 66.7 0.77 1.6 0.19 - - - -
Baseline MAP 58.7 0.79 0.3 0.04 58.4 0.80 0.2 0.04 6.1 0.93 0.3 0.06

AMAP 77.3 0.72 2.8 0.50 76.9 0.74 2.9 0.52 15.2 0.71 1.7 0.19

WLS 76.9 0.72 2.8 0.50 76.6 0.74 2.9 0.52 15.2 0.71 1.7 0.19

JMAP (β = 0) 63.8 0.72 5.4 0.25 58.1 0.80 2.7 0.12 8.2 0.92 0.9 0.09

SWLS (β = 0) 63.9 0.72 5.5 0.26 58.0 0.80 2.7 0.12 8.3 0.92 1.0 0.10

JMAP (β = 10) 61.8 0.74 3.1 0.20 58.4 0.80 1.5 0.15 7.6 0.92 0.7 0.09

SWLS (β = 10) 61.8 0.74 3.2 0.20 58.3 0.80 1.4 0.15 7.7 0.92 0.8 0.09

JMAP (β = 50) 62.0 0.75 2.3 0.30 60.3 0.79 2.0 0.31 7.6 0.91 1.2 0.17

SWLS (β = 50) 61.9 0.75 2.3 0.30 60.2 0.79 2.0 0.31 7.7 0.91 1.3 0.17

Table 4.1: Error measures for reconstructions based on simulated low-intensity
measurements.

were computed using the true flat-field, and hence they are “inverse crime”
reconstructions that serve only as a baseline for comparison. The two baseline
MAP reconstructions (with and without the TV prior) are based on the model
(4.10). Using the flat-field estimate v̂f instead of the true flat-field, we obtained
the FBP and AMAP reconstructions. It is clear from these reconstructions
that the flat-field estimation errors introduce severe ring artifacts, even in the
presence of a strong prior such as the TV-prior. The ring artifacts are especially
severe near the center of the image (cf. Section 4.1.3).

The preprocessed FBP (P-FBP) reconstruction is the result of applying the
combined wavelet and FFT filtering preprocessing method2 by Münch et al.
[Münch09] to the sinogram, followed by FBP. This removes stripes from the
sinogram, and although there are still some noticeable ring artifacts in the re-
construction, the preprocessing step clearly reduces the severity of the artifacts.
However, the preprocessing step involves several parameters that must be care-
fully tuned, and it does not directly allow us to use the AMAP or MAP-based
reconstruction models for reconstruction.

The proposed models are quite effective at reducing ring artifacts, as can be seen
from the JMAP reconstructions as well as the SWLS reconstruction. Notice that
both the SWLS (β = 0) reconstruction and the JMAP (β = 0) reconstruction
without the TV prior do not involve any parameters.

2We used a damping factor of 0.9 and a Daubechies 5 wavelet with a three-level decompo-
sition.
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Figure 4.5: Results of semi-convergence and initialization study. Reconstruc-
tions are computed with a UP prior β = 0.
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For the experiments without the TV-prior, Table 4.1 shows the error measures
based on both the full reconstruction domain and based on a disc of radius 0.8
cm (corresponding to the support of the phantom). The latter approach ignores
noise and ring artifacts outside the phantom, and hence this gives a more prac-
tical picture of the performance. For the reconstructions with a TV-prior, we
report our results based on a disc of radius 0.8 cm. Notice that in all cases, we
obtain the best reconstruction (in terms of both RAE and SSIM) using either the
JMAP reconstruction model or the SWLS model. Moreover, these reconstruc-
tions have RAEs that are similar to those of the baseline MAP reconstructions.
We also see that RRs and the RAEs for the JMAP reconstructions appear to
be correlated, but interestingly, the RFEs do not seem to agree with the RAEs.

Despite the fact that the P-FBP reconstruction is worse than the JMAP recon-
structions, it is interesting to note that it may be used to compute an improved
flat-field estimate. In our experiment, the ML estimate v̂f had a relative error of
4.8%, but the flat-field estimate computed based on the P-FBP reconstruction
had a relative error of only around 1.8%. However, using the TV-prior, the
JMAP and SWLS model still produced the best flat-field estimate of all the
models.

Finally, we remark that the AMAP and WLS reconstructions may be improved
slightly by increasing the parameter γ. Using γ = 10, we obtained AMAP
and WLS reconstructions with a relative error of around 10%, and although
these reconstructions did not have noticeable ring artifacts, they contained an
increased amount of undesirable TV-artifacts. On the other hand, the JMAP
and SWLS reconstructions obtained with γ = 3 only have a limited amount of
ring artifacts and TV artifacts, and hence we conclude that the proposed model
allows us to reduce ring artifacts using a smaller regularization parameter γ
than with the AMAP or WLS models, thus limiting unnecessary TV-induced
artifacts.

4.4.1.2 Semi-convergence and Initialization

We now investigate the role of regularization and its influence on the reconstruc-
tion. Recall that X-ray tomographic imaging is an ill-posed problem where a
small amount of noise in the measurements may results in a large change in the
reconstruction if it is not regularized by a suitable prior. Thus, without regular-
ization, intermediate iterates sometimes provide better reconstructions than it-
erates close to convergence. This behavior is known as semi-convergence and de-
pends on the reconstruction method as well as initialization. Semi-convergence
behavior often indicates that the reconstruction is under-regularized, and hence
a solution to our convex reconstruction model may be a poor reconstruction.
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In practice it is difficult to rely on semi-convergence as the true solution is
unknown.

We use the same experimental setup as in the previous experiment. Fig. 4.5
shows RAE and RR as a function of the number of iterations, with and without
the TV-prior (i.e., regularization). The semi-convergence behavior is evident
without the TV-prior, and not surprisingly, the baseline reconstruction obtains
the lowest RAE at the semi-convergence point after approximately 50 iterations.
After the semi-convergence point, noise start to dominate the reconstruction
and the RAE starts to increase monotonically. Comparing the AMAP and
JMAP models, we see that the AMAP model has a lower RAE at the semi-
convergence point, but it converges to a higher RAE. Taking the definition
of the AMAP and JMAP estimators into account, we can conclude that the
JMAP model still converges to a better reconstruction than the AMAP model.
Fig. 4.5 also shows the RR error measure, and while the AMAP model exhibits
semi-convergence both with respect to the RAE and the RR, the JMAP model
appears to monotonically reduce the RR despite semi-convergence with respect
to the RAE.

The dashed curves in Fig. 4.5 show the results of the same experiment, but
using the P-FBP reconstruction of u as initialization (the baseline MAP was
initialized with the baseline FBP reconstruction). The FBP reconstruction has
a smaller RAE than the zero-initialization, but FBP reconstructions may be
quite noisy when the SNR is low. Consequently, this initialization may not lead
to faster convergence without regularization, as can be seen in Fig 4.5. The
figure also shows that the AMAP reconstruction method still exhibits a mild
degree of semi-convergence when using the TV-prior, but the baseline method
and the JMAP method appear to reduce the RAE and the RR monotonically.
Moreover, it is clear that the FBP-initialization helps when combined with the
TV-prior. Finally, using the 50th AMAP iterate as initialization for JMAP (cor-
responding to the semi-convergence point for the RR), we obtained a significant
improvement in the number of iterations when compared to initialization with
zeros.

4.4.1.3 Noise Analysis

To investigate the noise properties of the proposed reconstruction model, we
generated 200 realizations of all measurements based on the grains phantom
(see Fig. 4.4) and with I0 = 500. We then computed pixelwise bias (the differ-
ence between the mean of the reconstructions and the phantom) and standard
deviation for reconstructions based on the baseline MAP, the AMAP, and the
JMAP reconstruction models. All reconstructions were computed with the TV-
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Figure 4.6: Pixelwise bias and standard deviation based on 200 realizations of
all measurements. The display range for the bias images is −0.1 to
0.1 cm−1, and the display range for the standard deviation images
is 0 to 0.06 cm−1. The reconstructions are computed with TV-
prior with γ = 3. The insets are blow-ups of the reconstructions
at the isocenter.

prior (γ = 3) and 1,500 iterations. The results are shown in Fig. 4.6. Generally
speaking, the AMAP model is less biased than the JMAP model. For small
values of β, the JMAP bias is somewhat large in comparison to the AMAP
bias, especially near the boundary of the object and at the isocenter. However,
the JMAP bias decreases when the parameter β is increased, but at the cost
of increasing the standard deviation. This is consistent with the fundamental
trade-off between bias and variance in statistical learning. More importantly,
the standard deviation is significantly lower for the JMAP model in comparison
to the AMAP model, and it is even comparable to that of the baseline MAP
model when β is small. Notice that in all instances, the standard deviation is
particularly large near the interfaces of the grains where the intensity jumps.

Recall from the previous experiment that the flat-field estimate may converge
very slowly. As a consequence, the bias component that is induced by flat-field
estimation errors decreases slowly as we increase the number of iterations. The
results therefore depend on the stopping criteria (i.e., the number of iterations).
Finally we note that the noise results for the SWLS model were very similar to
those of the the JMAP model, and hence we have chosen to omit the SWLS
results for the sake of brevity.
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4.4.1.4 Flat-field Regularization

Our next experiment demonstrates a potential shortcoming of the proposed
model when using the UP flat-field prior for reconstruction. We used the Shepp–
Logan phantom for the experiment, but unlike in the previous experiments, we
generated the measurements by evaluating the line integrals analytically. The
intensity parameter was I0 = 105. The reconstruction based on (4.14), the
leftmost reconstruction in Fig. 4.7, has some low-level ring artifacts. JMAP
with the FE prior and β = 0 leads to the reconstruction in the middle of
Fig. 4.7. Somewhat surprisingly, while the low-level rings are mostly gone,
the reconstruction has a few wide and very noticeable rings. These rings arise
because of the structure of the flat-field estimation errors which can be seen by
looking at the reconstruction ψv(v̂), defined in (4.37) and shown in Fig. 4.7.
Several high-intensity rings appear clearly, and these can be linked to large flat-
field estimation errors associated with a small number of detector elements. In
particular, the detector elements corresponding to rays that intersect the outer
ellipsoidal shell of the Shepp–Logan phantom tangentially give rise to large
estimation errors. We remark that we have observed experimentally that these
artifacts seem to be exacerbated by the fact that the two outer Shepp–Logan
ellipses are centered at the isocenter.

Now recall that the flat-field estimate v̂(u) can be expressed as (4.23), i.e., a
convex combination of independent estimates. Thus, the weights θ indicate
the emphasis of the different flat-field estimates. The plots in Fig. 4.7 show
these weights for two different priors parameterized by β. We see that when
β = 0 (corresponding to the UP flat-field prior), the flat-field estimate is based
almost entirely on v̂y, and the estimates v̂f and v̂pr both receive negligible (but
nonzero) weights. Inspecting the corresponding flat-field estimate (the bottom
plot in Fig. 4.7) reveals that for β = 0, the JMAP estimate is worse than the ML
estimate v̂f . This indicates over-fitting. To mitigate this, we can emphasize the
flat-field ML estimate v̂f by using the FE prior (i.e., α = 1+β(v̂f)), as described
in 4.2.2. Doing so effectively removes the major rings that were present with
the FE prior with β = 0, as shown in the rightmost reconstruction in Fig. 4.7.
Moreover, the rightmost plot in the figure confirms that the resulting flat-field
estimate depends less on v̂y than with the FE prior with β = 0. The FBP
reconstructions of the flat-field error, shown below the reconstructions in Fig.
4.7, clearly show a reduction in ring artifacts compared to the basic AMAP and
JMAP reconstructions.
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Figure 4.7: Reconstructions of the Shepp–Logan phantom after 1,000 itera-
tions, without the TV-prior on u. The display range for the re-
construction images is 0 to 0.4 cm−1, and 0 to 0.04 for the ring
images ψv(v̂). The first two plots show the values of θ1, θ2, θ3, as
defined in (4.23), for β = 0 and β = 50. The third plot shows the
element-wise relative error with respect to true flat-field v, defined
as ev(v̂) = 100 · diag(v)−1(v̂− v), for the ML flat-field estimate v̂f

and two JMAP flat-field estimates. The table lists the RAE and
RR error measures.
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FBP + smoothingP-FBP + smoothing AMAP-TV JMAP-TV (β = 0)JMAP-TV (β = 200)Figure 4.8: Reconstructions of real tomographic measurements. The display
range for the images is 0 to 10 cm−1. The reconstructions using
the TV-prior were obtained with γ = 0.01. The number of itera-
tions were 50 for reconstructions without TV prior and 1,000 with
TV prior. The insets are blow-ups of the reconstructions at the
isocenter.

4.4.2 Real Data Study

We now evaluate the performance of the proposed model based on real measure-
ment data provided by the Advanced Photon Source (APS) facility operated by
Argonne National Laboratory (USA). The data set provides tomographic mea-
surements of a sample of glass beads with some dried potassium from p = 900
projection angles between 0◦ and 180◦ in a parallel beam geometry and with a
600 × 960 pixel detector array. In this experiment, we will consider only a 2D
reconstruction of the center slice (slice 300) so we take r = 960. The energy of
the X-ray source was 33.27 keV, and the photon flux per pixel in each projection
was approximately 1200 photons/s. With an exposure time of only 6 ms, that
amounts to pixelwise photon counts in the range 0-20 per projection. Out of
a total of 20 flat-field measurements collected before and after the experiment,
8 appear to be corrupted, so we used s = 12 flat-field measurements for our
reconstructions. Moreover, we used a square grid with side length 0.3053 cm
and 768× 768 pixels for the reconstructions. Our reconstructions are shown in
the Fig. 4.8.

Without the TV-prior on the attenuation image, the reconstructions are quite
noisy because of the low SNR. The FBP reconstruction and the AMAP re-
construction both have ring artifacts which heavily distort the reconstruction.
The P-FBP reconstruction does not have noticeable ring artifacts, but the re-



4.5 Conclusion 67

construction is quite noisy. Thus, to reduce noise, we smoothed the FBP and
P-FBP reconstructions using a Gaussian filter with standard deviation 1.0, and
although this help, the resulting images are still somewhat noisy compared to
the other reconstructions. The JMAP reconstruction with the UP prior (β = 0)
has no noticeable ring artifacts, but it has a significant amount of noise. This
is especially noticeable near the circular boundary of the object, and it may be
because of flat-field estimation errors. Indeed, using the FE prior with β = 200
yields a reconstruction that is somewhat improved near the outer circles. Notice
that the JMAP reconstructions do not have such a “hole” in the middle like the
FBP, P-FBP, and AMAP reconstruction. Finally, including the TV-prior on u
results in the AMAP-TV and JMAP-TV reconstructions. These results verify
the applicability of proposed model for tomographic reconstruction based on
low-intensity measurements.

4.5 Conclusion

In X-ray computed tomography, the X-ray source intensity is typically estimated
based on a number of flat-field measurements. This estimation introduces un-
avoidable errors in popular reconstruction models such as AMAP, WLS, and
FBP, and these errors lead to systematic reconstruction errors in the form of
ring artifacts. By investigating the filtered backprojection of a line in the sino-
gram, we have demonstrated that such systematic errors introduce structural
changes in the reconstruction in the form of a ring. Based on the statistics of
X-ray measurements, our analysis shows an inverse relationship between sever-
ity of ring artifacts and the source intensity. Therefore, these systematic errors
can have a significant impact on the reconstruction quality of dose-constrained
and time-constrained problems. To mitigate this problem, we have introduced
a convex reconstruction model (JMAP) that jointly estimates the attenuation
image and the flat-field. We have also introduced a quadratic approximation
of the JMAP model, the stripe-weighted least-squares (SWLS) model, which
provides insight about the model and its similarities with existing models.

To assess the reduction of ring artifacts in the reconstructions, we have proposed
a “ring ratio” error measure which quantifies the flat-field error in the image do-
main. Our experimental results indicate that the model effectively mitigates
ring artifacts even for low SNR data, not only with simulated data but also
with real data sets. In some cases, the proposed method may itself introduce
artifacts when not appropriately regularized. These artifact essentially arise be-
cause of overfitting, and we have shown that they can be mitigated or supressed
by means of a suitable regularizing flat-field prior. Moreover, we have shown
experimentally that the JMAP and the SWLS models have similar performance
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in terms of noise and reconstruction quality.

Finally, we mention that the proposed methodology can readily be extended to
estimate a time-varying flat-field which may be useful in applications where the
flat-field does not remain stable while acquiring the tomographic measurements
and/or when the scanner acquires projection images and flat-field images in an
interleaved temporal order.

4.A Extrema of the Radial Profile

The extrema of the radial profile µ̃(ρ), defined in (4.9), depend on the parameters
t0 and ε > 0. To see this, we derive the critical points of µ̃(ρ). Setting the
derivative equal to zero yields the equation

µ̃′(ρ) = −3ρ
(
σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2

)
= 0

where σ = ε+ it0. It follows that the critical points are ρ = 0 and any solution
to the equation

σ(σ2 + ρ2)−5/2 + σ̄(σ̄2 + ρ2)−5/2 = 0,

or equivalently, ρ = 0 and solutions to the equation

σ

σ̄
= −

(
σ2 + ρ2

σ̄2 + ρ2

)5/2

.

Taking the complex logarithm of both sides of the equation yields the equation
2∠σ + 2kπ = π + 5∠(σ2 + ρ2), k ∈ Z, and hence

∠(σ2 + ρ2) =
2

5
∠σ +

2k − 1

5
π, k ∈ Z. (4.38)

This implies that the tangent of ∠(σ2 + ρ2) is equal to

2εt0
ρ2 + ε2 − t20

= tan

(
2

5
∠σ +

2k − 1

5
π

)
, k ∈ Z, (4.39)

or equivalently, if we define c−1
k = tan

(
2
5∠σ + 2k−1

5 π
)
and solve for ρ2, we get

ρ2 = 2εt0ck + t20 − ε2, k ∈ Z. Thus, in addition to ρ = 0, the real roots of the
right-hand side of this equation are the critical points of µ̃(ρ), and hence we
may limit our attention to k ∈ Z for which 2εt0ck + t20 − ε2 ≥ 0.

In order to find the extrema of µ̃(ρ), we now rewrite (4.9) as

µ̃(ρ) =
1

4π

|σ|
|σ2 + ρ2|3/2

cos(∠σ − ∠(σ2 + ρ2)).
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At a nonzero critical point ρk 6= 0, the angle ∠(σ2 + ρ2
k) is given by (4.38), and

it follows from (4.39) that

|σ2 + ρ2
k| = 2ε|t0|

(
c2k + 1

)1/2
.

This allows us to express the extrema associated with ρk as

µ̃(ρk) =
(ε2 + t20)1/2

4π(1 + c2k)3/4(2ε|t0|)3/2
cos

(
2

5
∠σ +

2k − 1

5
π

)
,

and it immediately follows that for |t0| � ε, the extrema are approximately
inversely proportional to

√
ε3|t0|.

4.B Interpretation of Flat-field Estimate

The ith element of flat-field estimate v̂, defined in (4.22), is given by

v̂i(u) =
1T fi + 1T yi + αi − 1

di(u)
(4.40)

where fi ∈ Rs, yi ∈ Rp, di(u) = s+ τi(u) +βi, and τi(u) =
∑p
j=1 exp(−eTi Aju).

This expression can be reformulated as

v̂i(u) =
s

di(u)

1T fi
s

+
τi(u)

di(u)

1T yi
τi(u)

+
βi

di(u)

αi − 1

βi

=
s

di(u)
(v̂f)i +

τi(u)

di(u)
(v̂y)i +

βi
di(u)

v̂pr(αi, βi) (4.41)

where the ML estimate v̂f is defined in (4.5), the estimate v̂y(û) is defined in
(4.16), and

v̂pr(α, β) = diag(β)−1(α− 1)

is the mean of the Gamma prior. It follows from the definition (4.20), i.e.,
di(u) = s+ τi(u) + βi, that

s

di(u)
+
τi(u)

di(u)
+

βi
di(u)

= 1

and hence v̂i(u) is a convex combination of three estimates. Thus, the full
flat-field vector v̂(u) can be expressed as

v̂(u) = diag(θ1)v̂f + diag(θ2)v̂y(û) + diag(θ3)v̂pr(α, β)

where θ1 = diag(d(u))−1s1, θ2 = diag(d(u))−1τ(u), and θ3 = diag(d(u))−1β
with θ1 + θ2 + θ3 = 1.
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4.C Type-II ML Estimation of Hyperparame-
ters

The marginal probability of fi1, . . . , fis given the hyperparameters αi and βi
can be computed analytically and is given by

P(fi1, . . . , fis | αi, βi)

=

∫ ∞
0

P(fi1, . . . , fis | vi)P(vi | αi, βi)dvi

=
Γ(ki + αi)

(
∏s
k=1 fik!) Γ(αi) ski

(
βi

s+ βi

)αi ( s

s+ βi

)ki
(4.42)

where ki =
∑s
k=1 fik. Here the identity

∫∞
0
xbe−ax dx = Γ(b+1)

ab+1 was used to
derive this expression. This probability distribution resembles the negative bi-
nomial distribution, and it follows from the first-order optimality conditions
associated with (4.24) that βi = sαi/ki, or equivalently, αi/βi = ki/s. This
implies that the mean of the Gamma prior is equal to the flat-field ML estimate
(v̂f)i. Substituting the expression for βi in (4.24), we obtain the one-dimensional
problem argminαi κi(αi) where

κi(αi) = − log
Γ(ki + αi)

Γ(αi)
− αi log

αi
αi + ki

− ki log
ki

αi + ki
.

The derivative of κi(αi) is

κ′i(αi) = −
[
z(ki + αi)−z(αi)− log

(
1 +

ki
αi

)]
= −

ki−1∑
l=0

1

αi + l
+ log

(
1 +

ki
αi

)
,

where z(x) denotes the digamma function. Similarly, the second derivative is
given by

κ′′i (αi) =

ki−1∑
l=0

1

(αi + l)2
− ki
αi(αi + ki)

(4.43)

where the summation satisfies the inequality

ki−1∑
l=0

1

(αi + l)2
=

αi+ki−1∑
n=αi

1

n2
>

∫ αi+ki

αi

1

x2
dx

=
k

αi(αi + ki)
(4.44)
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for αi > 0. This shows that κ′′i (αi) > 0 for α > 0, and hence κi is convex on
the positive real line. Moreover, since κ′(αi) tends to zero as as αi tends to
infinity, κ′(αi) can not have a positive zero. Consequently, the resulting flat-
field Gamma prior has zero variance (i.e., αi/β2

i tends to zeros for αi → ∞
since βi = sαi/ki) and its mean is equal to the empirical flat-field estimate, i.e.,
αi/βi = (v̂f)i.
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Chapter 5

Non-corresponding Image
Registration Models

Image registration [Modersitzki04; Modersitzki09; Brown92; Maintz98; Lester99;
Zitová03; Sotiras13] is a technique to estimate point to point correspondences
between images that represent physical states of an object or of multiple objects.
For example, image registration allows comparing complementary information
from CT and MRI images of a patient to diagnose a disease [Dean12]. Mathe-
matically, image registration is an ill-posed problem in the sense of Hadamard’s
well-posedness. Generally, ill-posedness is addressed by introducing additional
prior information, e.g., by using a physical evolution model of a material.

In some applications, images for registration may represent the physical states
of a deforming object at different time instants. The physics behind the evolu-
tion process has been extensively studied in the field of continuum mechanics
[Holmes09]. An object evolves or deforms due to the application of an external
force or other physical factors, e.g., temperature change, pressure variation, etc.
The deforming object rests at its equilibrium state when internal and external
forces balance each other; the entire system possesses minimum potential en-
ergy. The deformation of a material is defined as the departure of a material
from its reference configuration to its deformed state. Internal forces in a mate-
rial depend on the properties of a material such as Young modulus and Poisson
ratio for an elastic material. Moreover, the evolution process can be described
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mathematically by following fundamental physical laws, such as conservation of
energy, conservation of mass, and conservation of momentum which are applica-
ble for all types of materials. In addition, we can embed additional information
about the specific material through their constitutive relationship. The consti-
tutive relationship defines the relation between two physical quantities which is
specific to a material and approximates the response of a material to external
forces. For example, the constitutive relationship for a linear elastic material
says that the stress is linearly dependent on the internal strain.

Chaim [Chaim81] was one of the first to introduce concepts from continuum
mechanics to design an image registration model. He represents images used
for registration as a linear elastic material, enabling the deformation field to
follow a linear elasticity model. In another point of view, Broit enforces a prior
knowledge about the deformation which also addresses the ill-posedness of the
image registration model. He uses the minimum total potential energy principle
to frame a variational image registration model. According to this principle, the
deformed material possess minimum potential energy at its equilibrium state;
internal elastic forces and external driving forces balance each other. The work
done due to the forces can also be expressed in terms of potential energies.

In the context of image registration, the driving force should be applied such
that features of a reference image match with the deformed template image,
at least locally. Therefore, driving forces act over all spatial points in the do-
main depending on the images, its feature of interest, and the deformation field;
whereas driving forces are independent of deformation field in usual continuum
mechanics. The potential energy due to driving forces is known as a “similarity
measure” in the field of image registration. The internal elastic force, in the
case of an elastic material, oppose the driving force to achieve a regular and
smooth deformation field. The stored elastic energy potential due to internal
forces is also called the regularization energy in the field of image registration.
The total potential energy of the system is the sum of potential energy S due
to the driving force and the stored elastic energy E due to the internal forces.
Following the principle of minimum total potential energy, a variational image
registration model is expressed as

minimize
f

∫
Ω

S(x, f, T,R) dx+ α

∫
Ω

E(x, f,∇f(x)) dx. (5.1)

A reference image R and a template image T for registration are generally as-
sumed to belong to a space of all d−dimensional images and are compactly
supported scalar functions on a domain Ω ⊂ Rd. The deformation field f :
Ω ⊂ Rd 7→ Rd is also called a correspondence map in the context of image
registration. The regularization parameter α represents the elastic stiffness of
a material. The rigidity of deformation increases with increasing stiffness pa-
rameter. Generally, we assume that material is equally stiff everywhere; thus α
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is independent of spatial coordinates. The model (5.1) implicitly assumes that
every feature in a reference image has a suitable match in the template image.
Moreover, in the most of the practical applications, it is desirable that every
point in the reference image has a unique match in the template image, and
features preserve their orientation and do not cross over each other. Therefore,
a one-to-one and an orientation-preserving correspondence map almost every-
where in the spatial domain is an essential desirable feature between a given set
of images. We achieve these properties by restricting the Jacobian determinant
of deformation field to be positive in the entire domain. Therefore, we refer
to (5.1) as a corresponding image registration (CIR) model. Moreover, both
forward and backward map between reference and template image should be
one-to-one and inverse consistent [Christensen01a].

The formulation of a similarity measure depends on the application in hand and
set of features which we intend to match in given images. The most common
features are intensity and edges. One of the intensity based similarity measures
is simply a sum of squared differences (SSD) between a deformed template and
a reference image. Ideally, the goal is to estimate a deformation field such that
T (f) ≈ R. The normalized gradient fields (NGF) [Haber06] similarity measure
exploits intensity changes in the images. This is a suitable measure for images
from different modalities where it is assumed that the intensity changes appear
at corresponding positions. In mass preserving applications [Gigengack12], the
intensity of an image varies in proportion to the local change in volume, therefore
a similarity measure also incorporates the volume change in the formulation.

There are numerous works to apply physically motivated regularization ener-
gies in image registration. The linear elastic models are suitable only for small
deformations. For large deformations, the nonlinear hyperelastic energies [Rab-
bitt95; Darkner11], e.g., Saint Venant–Kirchhoff energy, Riemannian elastic en-
ergy [Pennec05], and polyconvex elastic energy [Droske04; Burger13] have been
studied in the image registration community. A well desired diffeomorphic de-
formation field can also be guaranteed through the hyperelastic regularization
energy [Burger13]. The viscous fluid flow models are also suitable for large
non-linear deformations fields [Christensen96]. Besides physical motivation, few
regularizers have been proposed based on the smoothness properties of defor-
mation field, i.e., diffusion [Fischer02], total-variation [FrohnSchauf08; Chum-
chob13], and curvature regularizer [Fischer04]. The diffusion and total-variation
regularizers are based on the L2-norm and L1-norm of first order derivative of
displacement field respectively while curvature regularization is based on the
second order derivative. The total-variation regularizer allows discontinuities
in the deformation field. The regularizers based on elasticity, fluid, and first
order derivative penalize affine linear rigid transformations, therefore a pre-
registration step is unavoidable. However, curvature regularizer has a null space
containing harmonic functions and affine linear rigid transformations, therefore
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it does not penalize such transformations. Moreover, a deformation field is
smoother for curvature regularizer in respect of regularizers based on first order
derivative.

The underlying assumptions of CIR model, i.e., correspondence almost every-
where, fails if few features of a reference image do not match with features in
a template image. Section 5.1 introduces two non-corresponding problems with
their underlying physical characteristics. We propose, in section 5.2, an image
registration framework, mainly inspired from damage mechanics, to solve the
non-corresponding problem where images have cracks. Section 5.3 explains ba-
sic properties of the proposed registration model. In section 5.4, we present
a discrete registration model inspired from fracture mechanics and establish a
relationship with the model inspired from the damage mechanics. In section 5.5,
we propose an image registration model for the non-corresponding model where
images have missing structures. We also establish the relationship between our
proposed model with the previously proposed models for images with missing
structures. Section 5.6 explains a numerical scheme based on the discretize-
then-optimize framework. We further demonstrate the potential of the proposed
model through simple academic examples in section 5.7. Section 5.8 concludes
our findings.

5.1 Problem Formulation

Much of the research in image registration has focused on identifying the corre-
sponding map, assuming the existence of one-to-one correspondence map almost
everywhere in the spatial domain between given images. In other words, every
feature in a reference image has a unique match in the template image. This
assumption fails if one of the images has a tumour and the other does not, a
part of a histological image is fractured into two parts after staining, or mate-
rials are glued together in a chemical process. In these situations, one-to-one
correspondence does not exist everywhere between the given physical states.
These problems are known as a partial data [Periaswamy06], missing correspon-
dence or missing structure [Chitphakdithai10; Nithiananthan12; Berendsen14],
registration with inconsistent image differences [Richard04], registration with
outliers [Kim04], or a non-correspondence [Chen15; Drobny15] image registra-
tion problem in the literature. In this work, we are discussing mainly two types
of non-corresponding problems as shown in Fig.5.1 and Fig.5.3.

The reference images in Fig. 5.1 and Fig. 5.3 represent the initial state of an
object having a light gray intensity on a lighter background and defined on a
domain ΩR ⊂ R2. Similarly, the template images represent a deformed state of
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the object where the object domain is ΩT ⊂ R2 after the deformation. Notice
that, there are different types of local deformations in Fig. 5.1 and Fig. 5.3 which
illustrate two types of non-corresponding problems of our interest in this thesis.

5.1.1 Problem 1: Images with Cracks

Γ

ΩR

R

ΩΓ

ΩT

T

Figure 5.1: The image R represents the initial state of an object where Γ
represent the spatial location where a crack originates. The image
T represents the deformed state after the crack formation where
ΩΓ represents area occupied by a crack.

The first problem is concerned with cracks and cavity in a material. Physically,
a crack is a space between two surfaces which have broken or been split as
shown in Fig. 5.1. Suppose that a crack originates at some location Γ in the
domain ΩR of the reference image, and after formation, occupies a region ΩΓ,
as represented in the template image. These images should be registered such
that

• the forward map f : ΩR\Γ ⊂ R2 7→ ΩT \ΩΓ ⊂ R2 is a one-to-one function,
and

• the backward map g : ΩT\ΩΓ ⊂ R2 7→ ΩR\Γ ⊂ R2 is a one-to-one function.

In the above definitions, the deformation fields are defined only on a part of the
domain instead of the full domain. The particles lying on the region ΩΓ do not
have any suitable match in the domain ΩR. Moreover, the forward deformation
field has a discontinuity along the line Γ, which we will explain in the next
paragraph. Here, we refer to Γ and ΩΓ as non-corresponding regions.
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Figure 5.2: One-dimensional example to illustrate discontinuities and non-
smoothness in the deformation field due to the formation of a
crack and the closing of a crack. The forward deformation field
is a discontinuous function where the jump discontinuity arises at
the location where the crack originates. Whereas, the backward
deformation field is a non-smooth continuous function.

In continuum mechanics, a crack in a material is represented mathematically by
a jump discontinuity in the deformation field [Francfort98]. We would like to
illustrate this behaviour through a simple one-dimensional academic example, as
shown in Fig. 5.2, where a material breaks into two parts. The crack develops
in the undamaged state R of a material at spatial location x = 0, and the
material attains a deformed configuration T . We describe the movement of
particles through a deformation field f : R 7→ R such that T (f) ≈ R, where the
deformation field f is given by

f(x) =


x+ 1 x > 0

x− 1 x < 0

0 x = 0

. (5.2)

The deformation field f has a jump discontinuity at the crack interface x = 0,
as shown in Fig. 5.2. We also observe jump discontinuities in higher dimen-
sions; therefore, mathematically, a crack interface is expressed as a set of jump
discontinuities.

In the context of image registration, it is equally important to understand the
movement of particles from the state T to R, i.e., the closing of a crack. The
backward deformation field g is given by

g(x) =


x+ 1 x < −1

x− 1 x > 1

0 −1 ≤ x ≤ 1

. (5.3)

The deformation field g is a non-differentiable continuous function at two points
x ∈ {−1, 1}.
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Our one-dimensional example shows that the forward and backward map for
images with cracks possesses different types of properties. In this work, we
propose an image registration model where we satisfy these properties of de-
formation fields only in the approximate sense, following the work by [Bour-
din00; Henao16]. In general, it is difficult to estimate jump functions numer-
ically. Therefore, it is always preferable to work in a continuous setting and
approximate a discontinuous function with a continuous function defined on
an infinitesimally small discretisation of a spatial domain. In this preliminary
work, we assume that the deformation field is a smooth, a one-to-one, and an
orientation-preserving function. Our proposed model estimate the deformation
field as well as identify the location of cracks in the images.

5.1.2 Problem 2: Images with Missing Structures

ΩR

R

ΩC

ΩT

T

ΩD

Figure 5.3: Images R and T represent two physical states of an object. The
structures inside the region ΩC of the image R has been completely
changed during the deformation, and a new structure has been
formed occupying the region ΩD in the deformed state T .

In this problem, some parts of a reference image do not find any suitable match
in the template image and vice-versa, for example, MRI scans of a patient before
and after successful tumor surgery. In the Fig. 5.3, features inside the region
ΩC of the reference image do not match with any feature in the template image.
Similarly, features inside the region ΩD do not find any match in the reference
image. However, nearby regions outside ΩC in the reference image match with
nearby regions outside ΩD in the template image. These images should be
registered such that

• the forward map f : ΩR\ΩC ⊂ R2 7→ ΩT\ΩD ⊂ R2 is a one-to-one function,
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and

• the backward map g : ΩT \ΩD ⊂ R2 7→ ΩR \ΩC ⊂ R2 is a one-to-one
function.

We refer to ΩC and ΩD as non-corresponding regions.

Unlike the deformation field for images with cracks, the deformation field for
images with missing structures does not possess any special characteristics in
the non-corresponding regions. A number of authors have proposed image regis-
tration models to align images with missing structures. In general, these models
identify non-corresponding regions through a dissimilarity measure, and masks
these regions to estimate a regularized deformation field in the correspond-
ing regions [Periaswamy06; Chitphakdithai10; Nithiananthan12; Berendsen14;
Richard04; Kim04; Chen15; Drobny15]. In this work, we also propose an image
registration model for images with missing structures following the similar ideas
as proposed previously by other authors. But, our formulation is different and
has some similarities with the model proposed for images with cracks as well as
has similarities with the previously proposed models.

5.2 Image Registration Model for Images with
Cracks

In this section, we propose an image registration model for images with cracks
based on the underlying physics of a crack formation. In fracture mechanics,
a crack in a material is represented mathematically by a jump discontinuity in
the deformation field [Francfort98]. However, in damage mechanics, a crack is
identified through the stiffness of a material [Marigo16], and the deformation
field is assumed to be a continuous function. It has been found in the field
of mechanics that these two ideas are approximately related [Sicsic13]. In this
work, we derive an image registration model following the two fundamental
principles of the formation of a crack in a material, mainly inspired from damage
mechanics [Marigo16]. These principles are:

• The material lose its stiffness entirely at the location of a crack.

• The material dissipates energy proportional to the crack surface.

Stiffness reflects the rigidity of a material. The less stiff the material is, the easier
to deform or stretch it is. A close to zero stiffness allows extreme stretching of a
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material, and due to this, a crack may form in the material. The internal elastic
energy of the material also decreases with decreasing stiffness. We assume, when
a crack forms, the material dissipates energy to balance the loss in the internal
elastic energy satisfying the law of conservation of energy. In fracture mechanics,
the dissipated energy is called the surface energy [Griffith21].

The dissipation energy carries information about the crack, which we need to
model mathematically to design a registration model. We introduce a scalar
phase field function p : Ω ⊂ Rd 7→ [0, 1) that varies smoothly between 0 to
1 and defines the severity of damage in a material. Sometimes, we call phase
field function a soft crack indicator function. The value 0 corresponds to an
undamaged zone, i.e., a non-crack region, and 1 a completely damaged zone,
i.e., the location of a crack. Now, we define the dissipation energy D(p) and a
stiffness function e(p) as a function of the phase field function p. Following the
two principles of the formation of a crack, the dissipation energy should be at
its maximum and the stiffness function should be at its minimum when a crack
forms in the material or say when p approaches to 1. As discussed before, the
internal elastic energy of the material varies with the stiffness of the material,
therefore elastic energy depends on the varying stiffness function e(p).

The driving forces are the cause of deformation in a material. In the image
registration context, the similarity measure plays the role of a driving force. We
assume that the non-crack regions guides the main registration process where we
are assured of one-to-one correspondence between features of the given images.
Therefore, as per our assumption, similarity measure should act only on the
non-crack region by masking the crack region through a mask function s(p).
Following all the above mentioned assumptions, the total potential energy of
the system, in the case of the crack formation, is the sum of potential energy
due to the driving force, the internal elastic energy, and the dissipated energy,
i.e.,

J (f, p) =

∫
Ω

(
s(p(x))S(x, f, T,R) + αe(p(x))E(x, f,∇f(x)) + βD(p(x))

)
.

(5.4)

Following the minimum total potential energy principle, the variational image
registration model is expressed as

minimize
f,p

J (f, p). (5.5)

We refer to model (5.5) as a non-corresponding image registration (NCIR)
model. In mechanics, the dissipation energy function is generally assumed
[Marigo16] to be

D(p(x)) = w(p(x)) +
1

2
l2‖∇p(x)‖22, (5.6)
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where w(p) formulates local contributions and ‖∇p‖22 is the non-local contribu-
tions in the dissipation energy of a material due to damage. p is a dimensionless
quantity, therefore a length constant l needs to be introduced to match the di-
mensions. In mechanics, l is known as the internal length which controls the
width of the crack zone. β is a regularization parameter which varies the tough-
ness of a material. The toughness refects the ability of a material to break. The
less tough the material is, easier to break it is.

5.3 Properties

As per our model assumptions, the model (5.5) should satisfy following proper-
ties:

1. The total energy of the system should always be non-negative and finite.

2. The stored elastic energy E and similarity measure S are non-negative
functions.

3. The stiffness function e(p) is a positive strictly decreasing function which
decreases from 1 to 0 when p grows from 0 to 1, i.e., e′(p(x)) < 0, as
shown in Fig. 5.4(a). A material loses its stiffness monotonically based on
the severity of damage.

4. The local part of dissipated energy w(p) is a positive strictly increasing
function of p, increasing from 0 when p(x) = 0 to a finite positive value
when p(x) = 1, i.e., w′(p(x)) > 0, as shown in Fig. 5.4(b). A material
releases energy monotonically based on the severity of damage.

5. The similarity mask function s(p) is a positive strictly decreasing function,
i.e., s′(p(x)) < 0, which decays as p grows from 0 to 1.

6. The regularization parameters α and β are non-negative scalars.

The properties P3 and P4 follows from the two fundamental principles of the
formation a crack, as described in the previous section. We prove the property
P5 later in this section.

5.3.1 Study of Euler-Lagrange Equation

Ideally, the phase field function value is 0 in the non-crack region and 1 in
the crack region. As per our model assumptions, the phase field function is a
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Figure 5.4: The variation of stiffness function and the local part of dissipated
energy with respect to phase field function.

smooth function and it varies between 0 to 1 even in the non-crack region. In
this section, we aim to understand how the phase field depends on the similar-
ity measure, the elastic energy, the regularization parameters, and the choice
of dissipation energy. Therefore, we analyze the first-order optimality condition
for the proposed model (5.5) with respect to the phase field function. The inves-
tigation also illustrates the interaction between the stiffness and the toughness
regularization parameters.

We investigate our proposed model (5.5) in a one-dimensional setting, i.e.,

J (f, p)

=

∫
Ω

[
s(p(x))S(x, f, T,R) + αe(p(x))E(x, f,∇f(x)) + βw(p(x)) +

1

2
βl2p′(x)2

]
dx

(5.7)

where f : Ω ⊂ R 7→ R and p : Ω ⊂ R 7→ [0, 1] to be estimated.

For a fixed f , suppose the first variation of J at a point p̂ vanishes in the
direction γ ∈ C∞0 . This implies

δJ(p̂; γ) = lim
ε→0

J(p̂+ εγ)− J(p̂)

ε
= 0. (5.8)

The associated Euler-Lagrange equation is given by

s′(p̂(x))S(x) + αe′(p̂(x))E(x) + βw′(p̂(x))− βl2p̂′′(x) = 0. (5.9)

In order to simplify our investigation, we disregard the effect of the non-local
part of dissipation energy. Therefore, we assume that the internal length pa-
rameter l is zero and the crack indicator function has a sharp transition from
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the non-crack region to the crack region. We investigate the following Euler-
Lagrange equation

s′(p̂(x))S(x) + αe′(p̂(x))E(x) + βw′(p̂(x)) = 0. (5.10)

A material has zero elastic energy at its initial state, i.e., before any deformation.
If we substitute E = 0, then (5.10) becomes

s′(p̂(x))S(x) + βw′(p̂(x)) = 0. (5.11)

It follows from property P2 and P4 that (5.11) is satisfied only if

s′(p̂(x)) < 0. (5.12)

This proves that property P5 holds.

In damage mechanics, the most common choices for dissipation energy are

DE1. w(p) = p2 satisfying w′(0) = 0, and

DE2. w(p) = p satisfying w′(0) > 0.

These function choices influence the behavior of the proposed NCIR model sig-
nificantly as we observe this further in this section.

If a material does not have any crack region, i.e., p̂(x) = 0, then (5.10) yields

s′(0)S(x) + αe′(0)E(x) + βw′(0) = 0. (5.13)

Now suppose, we consider dissipation energy, defined in DE1, i.e., w(p) = p2

satisfying w′(0) = 0, then (5.13) yields

s′(0)S(x) + αe′(0)E(x) = 0. (5.14)

Following property P2 and P5, s′(0)S(x) ≤ 0, and according to property P2
and P3, we have that αe′(0)E(x) ≤ 0. This concludes that

E(x) = 0 and S(x) = 0 at p̂ = 0, (5.15)

assuming α > 0. α = 0 nullifies the effect of elastic energy, and hence it is
not of our interest. Equation (5.15) signifies that if the phase field is zero, the
reference and the template images are in a perfect match, i.e., S = 0, without
any deformation, i.e., E = 0. But, in practice, a reference and a template image
are in correspondence after deformation, i.e., E ≥ 0. In this case, the phase field
function does not attain zero as we see in the next paragraph.
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Now suppose, s(p) = (1 − p)2 satisfying property P5, i.e., s′(0) < 0, e(p) =
(1 − p)2 satisfying property P3, i.e., e′(p) < 0, and w(p) = p2 following DE1
and w′(0) = 0, (5.10) would be

−2(1− p̂(x))S(x)− 2α(1− p̂(x))E(x) + 2βp̂(x) = 0, and (5.16)

p̂(x) =
1

1 + β/(S(x) + αE(x))
. (5.17)

The equation p̂(x) = 0 only holds when both S(x) = 0 and E(x) = 0, assuming
α > 0 in the expression (5.17). We interpreted the same result through the
equation (5.15).

The above analysis points out that the phase field is zero in the non-crack region
only if the given template and reference image are in correspondence everywhere
without any deformation. This implies that both the images are same and no
need to peform registration. Otherwise, the phase field is always non-zero in
the non-crack region.

As we explained before, the deformation field should be discontinuous along the
crack interface. However, the proposed model (5.5) is based on the assumption
that the deformation field is a continuous, a one-to-one, and an orientation-
preserving function. The phase field equal to 1 corresponds to the forma-
tion/nucleation of a crack. According to the equation (5.17), the phase field
value is 1 only if the system has either infinite elastic energy or infinite simi-
larity measure, which does not satisfy the property P1, assuming regularization
parameters are positive. Therefore, the proposed formulation models deforma-
tions just before the nucleation of a crack when the system has finite energy and
a continuous deformation field assumption is valid.

The equation (5.17) signifies that the phase field depends on the similarity mea-
sure, the elastic energy, and the regularization parameters. We further simplify
our investigation and assume that the non-crack regions are in correspondence,
i.e., S(x) = 0. With this assumption, (5.17) would be

p̂(x) =
1

1 + β/(αE(x))
. (5.18)

Fig. 5.5(a) illustrates the variation in the phase field function with respect to the
elastic energy E for multiple conditions on regularization parameters, following
equation (5.18). The elastic energy E increases with increasing deformation with
respect to the initial state of a material. Fig. 5.5(a) indicates that the phase field
increases with increasing deformation and approaches to 1 when deformation is
significantly large, such as in the crack region. If β = α, the phase field function
becomes independent of the regularization parameters and solely depends on
the elastic energy. This indicates that, in the proposed model, the effect of the
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regularization parameters are negligible if the similarity measure is close to zero
and β = α. We also observe similar behaviour in our numerical experiments.

At a fixed elastic energy, according to (5.18), the phase field is approximately
inversely proportional to the toughness constant β, and approximately directly
proportional to the stiffness constant α. Toughness reflects the breakability
and the stiffness reflects rigidity of a material. If a material is less tough,
i.e., easy to break, the probability of formation of a crack is higher. But, it
is counterbalanced by stiffness of a material. If a material is less stiff, it is
easy to stretch the material. Therefore, even the toughness is low, it would be
take longer to break a stretchable material. These physical intuitions behind
the toughness and stiffness help to select the regularization parameters for the
registration of a given set of images.
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Figure 5.5: The dependence of phase field function p on the elastic energy E
for two choices of the dissipative energy function. β is a damage
toughness constant and α is a stiffness constant. s(p) = (1 − p)2

and e(p) = (1− p)2.

Now suppose, the equation (5.13) has dissipation energy w(p) = p satisfying
w′(0) > 0, as mentioned in DE2, and following property P2 and P5, s′(0)S(x) ≤
0 and according to property P2 and P3, αe′(0)E(x) ≤ 0. This concludes that

s′(0)S(x) + αe′(0)E(x) < 0, (5.19)

assuming both α > 0 and β > 0. If non-crack regions match perfectly, i.e.,
S(x) = 0, according to inequality (5.19) the elastic energy should always be
positive, i.e., E > 0. Physically, this has both positive and negative implications.
If the non-crack regions are in a perfect match without any deformations, the
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elastic energy should be zero, but the inequality (5.19) enforces elastic energy to
be positive which is an undesirable behaviour. On the other hand, if non-crack
regions match perfectly after deformation, elastic energy would be non-negative;
and inequality (5.19) would be satisfied and phase field function could be zero in
the non-crack region, which is a desirable behavior. This behavior differs with
dissipation energy w(p) = p2 satisfying w′(0) = 0, as mentioned in DE1, where
phase field attains a non-zero value in the non-crack region.

For example, if s(p) = (1 − p)2 satisfying s′(0) < 0, e(p) = (1 − p)2 satisfying
e′(p) < 0, and w(p) = p satisfying w′(0) > 0, (5.10) would be

−2(1− p̂(x))S(x)− 2α(1− p̂(x))E(x) + β = 0, and (5.20)

p̂(x) = 1− β

2(S(x) + αE(x))
. (5.21)

The Fig. 5.5(b) displays the variation of the phase field function (5.21) with
respect to the elastic energy, assuming that the similarity measure is zero, i.e.,
S(x) = 0. The phase field attains a negative value, which is a physically un-
realistic scenario and violates our model assumptions. We can reformulate the
proposed model and explicitly constraint the phase field such that it always lies
between 0 and 1. The first order optimality condition for the constraint problem
still needs to be investigated.

In our numerical experiments, we use dissipation energy w(p) = p2 to verify
our preliminary conclusions about the behaviour of the phase field and the
regularization parameters obtained through the study of first order optimality
condition for the proposed model.

5.4 Discrete Image Registration Model

We can also formulate a variational registration model without any continu-
ity assumptions on a deformation field, borrowing ideas from fracture mechan-
ics [Francfort98]. A crack Γ ⊂ Ω is a (d − 1)−dimensional hypersurface in a
d−dimensional domain. If w(x) represents the energy required to create an in-
finitesimal crack at the point x of Ω, then the surface energy associated to the
crack Γ ⊂ Ω is given by ∫

Γ

w(x) dHd−1(x) (5.22)

where dHd−1 is (d − 1)−dimensional Hausdorff measure, and β represents the
toughness of a material. Once again, following the principle of minimum to-
tal potential energy of the system, the variational image registration model is
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expressed as

minimize
f,Γ

∫
Ω \Γ

S(x, f, T,R) + α

∫
Ω \Γ

E(x, f,∇f(x)) + β

∫
Γ

w(x) dHd−1(x).

(5.23)

This model is similar to the well-known Mumford-Shah image segmentation
model [Mumford89]

minimize
u,Γ

∫
Ω \Γ

|u− g|2 + µ

∫
Ω \Γ

|∇u|2 + λ

∫
Γ

dHd−1(x). (5.24)

The existence of a minimizer for the functional (5.24) has been shown through
the weak formulation of the problem [De Giorgi89], i.e.,

minimize
u

∫
Ω

|u− g|2 + µ|∇u|2 + λHd−1(Su) (5.25)

where Su is the discontinuity set of u in an approximate sense, and u belongs
to a special class of functions of bounded variation (SBV). The weak formu-
lation is further approximated by elliptical functionals [Ambrosio90] through
Γ−convergence theory, i.e.,

minimize
u,p

∫
Ω

(1− p)2|u− g|2 + µ(1− p)2|∇u|2 + λ
(p2

l
+

1

2
l‖∇p‖22

)
. (5.26)

The expression (5.26) is similar to our proposed model (5.5) if we choose s(p) =
(1− p)2, e(p) = (1− p)2, and w(p) = p2, i.e.,

minimize
f,p

∫
Ω

(1− p)2S(x, f, T,R) + α(1− p)2E(x, f,∇f(x)) + β
(
p2 +

1

2
l2‖∇p‖22

)
.

(5.27)

The existence analysis of the model (5.23) is still an open question but hopefully
can be shown by following the ideas from [De Giorgi89]. It is possible that the
elliptical approximation of weak formulation of (5.23) can be shown equivalent to
our model (5.5) following the ideas from [Ambrosio90] and work done in the field
of mechanics [Henao10; Henao15], however, this still needs to be investigated
rigorously.

5.5 Image Registration Model for Images with
Missing Structures

We are now concerned with a situation when some regions of a reference image do
not match with any region in a template image. We refer to these regions as non-
corresponding regions. The similarity measure computes the similarity between
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two images based on the features of interest and it attains a high value in the
non-corresponding regions. This observation has motivated a number of authors
[Brett01; Periaswamy06; Ou11; Drobny15] to propose a locally-weighted image
registration model. The weight function depends on the similarity measure
and assigns a lower weight to the non-corresponding regions. A general image
registration model is expressed as

minimize
f

∫
Ω

w(x, f, T,R) S(x, f, T,R) + α

∫
Ω

E(x, f,∇f(x)). (5.28)

One of the common choices for the weight function w(x, f, T,R) [Drobny15] is

w(x, f, T,R) = exp(−S(x, f, T,R)2/σ) (5.29)

where σ is a regularization parameter which controls the area of the correspond-
ing regions.

Another approach to solving the problem is a joint segmentation and registra-
tion approach [Chitphakdithai10; Kwon14; Chen15; Richard04] where a regu-
larization energy term is introduced to penalize the area of non-corresponding
regions. On a similar note, we are proposing a generalized model for the prob-
lem. The model proposed by [Richard04] can be considered as a special case of
our proposed model.

We assume that the driving force acting on corresponding regions majorly guides
the image registration process. Therefore, similarity measure mainly works on
the corresponding regions by masking the non-corresponding regions by means
of a phase field function. This function varies between 0 to 1 and attains values
close to 1 in the non-corresponding regions. We introduce an energy term which
represents the work done on the non-corresponding regions in terms of the phase-
field function. Therefore, the total energy of the system is given by

J (f, p) =

∫
Ω

s(p(x))S(x, f, T,R) + αE(x, f,∇f(x)) + βD(p(x)), (5.30)

and the image registration model following the minimum total potential energy
principle is defined as

minimize
f,p

J (f, p). (5.31)

The model (5.31) is similar to the model (5.5) assuming e(p) = 1. Therefore,
most of the analysis done for (5.5) can readily be extended for (5.31).

Notice that both the models (5.31) and (5.28) estimate smooth deformation
fields in non-corresponding regions, but they are majorly guided by nearby cor-
responding regions. We want to show the connection between these two models
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by specifying s(p) = (1 − p)2, and D(p) = p2 in the energy functional (5.30),
i.e.,

J (f, p) =

∫
Ω

(1− p(x))2S(x, f, T,R) + αE(x, f,∇f(x)) + βp2(x). (5.32)

Suppose, the first variation of J with respect to p̂ vanishes in all directions
γ ∈ C∞0 . This implies,

δJ(p̂; γ) = 0. (5.33)

The associated Euler-Lagrangian equation is

−2(1− p̂(x))S(x, f, T,R) + 2βp̂(x) = 0. (5.34)

This implies

p̂(x) =
S
S + β

. (5.35)

After substituting the optimal p̂(x) in (5.32), the model becomes

minimize
f

∫
Ω

β

S(x, f, T,R) + β
S(x, f, T,R) + αE(x, f,∇f(x)), (5.36)

which is similar to the weighted image registration model (5.28) with weight
function

w(x, f, T,R) =
β

S(x, f, T,R) + β
. (5.37)

The weight functions (5.29) and (5.37) are illustrated in Fig. 5.6.

1 2 3 4 5

0.5

1

S

w weight (5.29)
weight (5.37)

Figure 5.6: Illustration of weight functions (5.29) and (5.37) at σ = 1, and
β = 1.
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5.6 Numerical Implementation

We discretize the variational problem (5.5) to compute a numerical solution. We
use the Galerkin finite element method (FEM) to approximate f ∈ V from a
finite-dimensional subspace Vh ⊂ V. The presentation of discretization scheme
in this work is motivated by the work of Ruthotto et al. [Ruthotto15].

5.6.1 Galerkin Finite Element Method Discretization

The two-dimensional domain is triangulated with a total of nt triangles Th where
h is the mesh size, the maximum diameter of a triangle. Let Vh be a finite-
dimensional subspace of piecewise linear functions with basis b1, b2, . . . , bnv :
Ω 7→ R, where nv is the total number of vertices in the mesh. The vertices of
triangles are denoted by V1, V2, . . . , Vnv . The continuous function f = (f1, f2)
is represented in terms of basis functions as

f(x) =

nv∑
i=1

fi bi(x) (5.38)

where coefficients f are stored component-wise in a column vector f = (f1, f2)T ∈
R2nv . Similarly, the function p is expressed in terms of linear basis functions as

p(x) =

nv∑
i=1

pi bi(x) (5.39)

where coefficients p are stored component-wise in a column vector p ∈ Rnv .

The partial derivatives ∇ = (∂1, ∂2) of p are given by

∇p(x) =

nv∑
i=1

pi ∇bi(x). (5.40)

The partial derivative of a linear basis function is piecewise constant all over the
triangle. The partial derivatives are stored in a column vector Jp ∈ R2nt where
J ∈ R2nt×nv is a partial derivative operator formed with a partial derivative of
basis functions. The Jacobian matrix ∇f(x) is also stored in a column vector
Df ∈ R4nt where D ∈ R4nt×2nv is defined as

D = I2 ⊗ J. (5.41)
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We use midpoint quadrature rule to compute the numerical integration of our
objective functional. The first integral in (5.5) is approximated as∫

Ω

s(p(x)) S(x, f, T,R) =

nt∑
i=1

∫
(Th)i

s(p(x)) S(x, f, T,R) (5.42)

≈
nt∑
i=1

Area((Th)i) s(p(xm)) S(xm, f, T,R) (5.43)

where xm is the centroid of a triangle Th. Similarly, we approximate other
integrals of (5.5).

Let A ∈ Rnt×nv be an averaging matrix on the centroid of a triangle, defined
as,

Ai,j =

{
1/3 if Vj is node of (Th)i

0 otherwise.
(5.44)

Another averaging matrix B ∈ R2nt×2nv is defined as

B = I2 ⊗A, (5.45)

and v ∈ Rnt stores area of triangles, and we define V = diag(v).

For illustration, if we assume that the similarity measure is a intensity preserving
sum of squared differences, i.e.,

S(x, f, T,R) =
1

2

(
T (f(x))−R(x)

)2

, (5.46)

the first integral in (5.5), in its discrete form, utilizing (5.43), is represented as

S[f ,p] =
1

2
res(f)Tdiag(s(Ap)� v)res(f) (5.47)

where res(f) = T (Bf)−R(x).

The discrete partial derivatives of the functional S[f ,p] are

∂fS = res(f)Tdiag(s(Ap)� v)∇T (Bf)B, (5.48)

∂pS =
1

2
(res(f)� res(f)� v)T diag(s′(Ap))A, (5.49)

∂2
f S ≈ BT (∇T (Bf))Tdiag(s(Ap)� v)∇T (Bf)B, (5.50)

∂2
pS =

1

2
ATdiag(res(f)� res(f)� v) diag(s′′(Ap))A, (5.51)

∂pfS = ATdiag(res(f)� s′(Ap)� v)∇T (Bf)B. (5.52)
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Similarly, if the choice of elastic energy is the hyperelastic regularization energy
[Ruthotto15], i.e.,

E(x, f,∇f(x)) =
1

2
αl‖∇(f − fref)‖22 + αvψ(det(∇f(x))) (5.53)

where ψ(v) = (v − 1)4/v2, the second integral in (5.5) is represented in its
discrete form as

E[f ,p] =αEl[f ,p] + αEv[f ,p],

=
ααl
2

(f − fref)
TDT [I4 ⊗ (e(Ap)� v)]D(f − fref)+ (5.54)

ααv(e(Ap)� v)Tψ(detDf). (5.55)

The discrete partial derivatives are

∂fE
l = αl(f − fref)

TDT [I4 ⊗ (e(Ap)� v)]D, (5.56)

∂pEl =
αl
2

[D(f − fref)� (I4 ⊗ v)�D(f − fref)]
T (14 ⊗ e′(Ap))A, (5.57)

∂2
f El = αlD

T [I4 ⊗ (e(Ap)� v)]D, (5.58)

∂2
pEl =

αl
2
AT (14 ⊗ Int)Tdiag(D(f − fref)� (I4 ⊗ v)�D(f − fref))

(14 ⊗ Int) diag(e′′(Ap))A, (5.59)

∂pfE
l = αlA

Tdiag(e′(Ap)� v)(14 ⊗ Int)diag(D(f − fref))D, (5.60)

and,

∂fE
v = αv(e(Ap)� v)Tψ′(detDf) ddetDf , (5.61)

∂pEv = αv(ψ(detDf)� v)Tdiag(e′(Ap))A, (5.62)

∂2
f Ev ≈ αv(ddetDf)Tdiag(e(Ap)� v � ψ′′(detDf)) ddetDf , (5.63)

∂2
pEv = αvA

Tdiag(ψ(detDf)� v � e′′(Ap))A, (5.64)

∂pfE
v = αlA

Tdiag(e′(Ap)� v � ψ′(detDf)) ddetDf . (5.65)

If we consider dissipated energy, i.e.,

D(p(x)) = w(x) +
1

2
l2‖∇p‖22, (5.66)

the third integral in (5.5), in its discrete form, is expressed as

D[p] = β
(
vTw(Ap) +

1

2
l2pTJTdiag(12 ⊗ v)Jp

)
. (5.67)
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The discrete partial derivatives are

∂pD = β
(
vTdiag(w′(Ap))A + l2pTJTdiag(12 ⊗ v)J

)
, (5.68)

∂2
pD = β

(
ATdiag(v � w′′(Ap))A + l2JTdiag(12 ⊗ v)J

)
. (5.69)

To summarize, the discretized objective functional of (5.5) is expressed as

J[f ,p] = S[f ,p] + E[f ,p] + D[p]. (5.70)

5.6.2 Multi-level Optimization and Initialization

In this work, we apply the Gauss-Newton (GN) optimization algorithm to locally
minimize the energy function (5.70). Image registration functionals are highly
non-convex in general. Therefore, an initial estimate plays an important role
in an iterative method to converge to a desirable local optimal point. In a
multilevel approach, an optimal point computed at a coarse discretization is the
starting point of an iterative algorithm at a finer discretization of the domain.
It is assumed that the optimal point at a coarse discretization is close to a global
minimum or a desired local minimum. Therefore, the optimization problem at
a finer discretization converges faster to a local optimal point. In practice, this
strategy works efficiently to estimate a desirable solution.

The GN algorithm approximates a local curvature information to estimate an
update step du = [df; dp] by solving a linear system, i.e.,

H du = −dJ (5.71)

where H is an approximated positive definite Hessian matrix. We approximate
the Hessian matrix as

H =

[
∂2
f S + ∂2

f E 0
0 ∂2

pS + ∂2
pE + ∂2

pD

]
, (5.72)

and ensure positive definitness of the matrix by choosing functions such that

s′′(p) ≥ 0, e′′(p) ≥ 0, and w′′(p) ≥ 0, ∀p. (5.73)

Given a starting point u(0) = [f(0); 0], where f(0) is the initial configuration of
the discretization grid; the algorithm estimates the next step

u(k) = u(k−1) + λdu, (5.74)

where λ is the step size computed using the Armijo line search algorithm. We
refer to [Modersitzki09] for a detailed description of the optimization procedure,
stopping criteria, etc., in the context of image registration.
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5.7 Experiments and Results

We demonstrate the potential of our proposed model using academic examples as
shown in Fig. 5.7 and Fig. 5.13, for which the deformation fields can be expressed
analytically. This allows us to compute error measures numerically and evaluate
the accuracy of the registration. However, the analytical deformation field is not
a unique solution for the chosen images, but this is one of the physically desirable
solution.

We are using model (5.5) with s(p) = (1−p)2, e(p) = (1−p)2+η, and w(p) = p2.
These function choices are based on our analysis of first order optimality con-
dition of the energy functional with respect to p in section 5.3. The stiffness
function might reduce to zero in the crack zone, which can completely distort
the regularity of the deformation fields. Therefore, a small constant η = 10−7

is added to regularize the deformation field in the crack region. We used Hy-
perelastic regularization energy with parameters αl = 1 and αv = 1.

Digital images are discrete data because intensities are known only on a set of
grid points. On the other hand, image functions T and R in the registration
model are assumed to be continuous and defined all over the spatial domain.
Therefore, we define a continuous image model represented by a regularized
spline basis functions. We use a built-in functionality of the FAIR toolbox to
define a spline image model where bending energy is a choice of regularizer
with a smoothing parameter θ = 4 × 10−2. In this work, we are extensively
using built-in functions of the FAIR toolbox [Modersitzki09], and its add-on
FAIRFEM [Ruthotto15], unless stated otherwise.

We discretize the objective functional at five levels and optimize it sequentially
at each level. The solution at a coarse level serves as an initial guess at a finer
level. The estimated functions at a coarse grid are prolongated using linear
polynomial basis functions. The image size is 128 × 128 pixels with a domain
size of 2× 2 units. However, we display results at the third discretization level,
i.e., 32× 32 pixels, due to a clear visualization of the deformation field.

We compare the correspondence map fn, estimated from the proposed NCIR
model (5.5), and fc, estimated from the CIR model (5.1), with the analytical
solution f̂ . We report the percent deformation field error,

ef̂ (f) = 100× ||f − f̂ ||2
||f̂ ||2

, (5.75)

to compare the accuracy of deformation fields. Instead of computing the error
measure for the full domain, we calculate the deformation field error only for
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the particles on the foreground object. The internal length l is zero in all exper-
iments unless explicitly stated otherwise. We choose regularization parameters
in all experiments based on the smallest percent error.

5.7.1 Intensity-preserving Registration

R T

Figure 5.7: Intensity preserved images R and T for image registration. The
display range for images is 0 to 1.

The appropriate similarity measure for the academic example, as shown in
Fig. 5.7, is the intensity preserving SSD because the intensity of reference and
template images are same. The intensity preserving SSD similarity measure is

S(x, f, T,R) =
1

2

(
T (f(x))−R(x)

)2

. (5.76)

Fig. 5.8 shows the reference and the template image, deformed template images,
a grid visualization of the deformation field overlaid on the template image, and
a phase field map. In this example, the object expands and breaks into two
parts. Therefore, the analytical forward map f̂ : ΩR ⊂ R2 7→ ΩT ⊂ R2 is given
by

f̂1(x1, x2) =


cx1 + d x1 > 0

cx1 − d x1 < 0

0 x1 = 0

, f̂2(x1, x2) = cx2, (5.77)

where c is a scaling constant, 2d is the width of the crack in the image T , and
the center of the coordinate system lies at the center of an image.

The deformed template images T (fc) and T (fn) are quite similar to the ref-
erence image with minor differences around the crack zone. However, we can
notice substantial variations in the deformation fields around the crack zone
with respect to the analytical solution. Therefore, an error measure only based
on the similarity between a reference and a deformed template image may not
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Reference (R) T (fc) T and f̂ T and fc

ef̂ (fc) = 7.94%

Template (T) T (fn) p T and fn

ef̂ (fn) = 2.52%

Figure 5.8: Forward maps and registered images based on an academic exam-
ple. The regularization parameter α = 2 × 103 for CIR model,
and (α, β) = (700, 2 × 104) for NCIR model. The display range
for images is [0,1].

be good enough to evaluate the performance of the image registration model.
The accuracy of the deformation field is equally important. Unfortunately, the
ground truth deformation field is not known for almost all real-world applica-
tions, hence error measure based on the deformation field can not be used.

The NCIR model estimates deformation field fn with percent error 2.52% while
CIR model estimate fc with a percent error of 7.94%. The background intensity
of the reference image is same as the intensity of the cracked zone in the template
image. It is possible that particles on the background region in the reference
image might map to particles lies in the cracked zone in the template image.
This is what we observe in the grid representation of fc at the top and bottom
corner of the cracked zone. On the other hand, using the NCIR model, the
phase field function identifies the crack region accurately in the reference image.
Consequently, the phase field reduces the stiffness along the crack region, and
allows large deformations. Moreover, the phase field masks the crack region such
that the similarity measure mainly act in the non-crack region. Consequently,
the particles lies in the non-crack region are not influenced much by the large
deformations in the nearby crack region.
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Above all, the deformation fields in the background region differs a lot from the
analytical solution. The background does not contain enough textural informa-
tion, and driving forces are almost inactive in that region. Therefore, surround-
ing regions around the foreground object are mainly driven by deformations in
the foreground object.

We now emphasize the limitation of the CIR model by interchanging the role
of template and reference image and estimating a backward deformation field.
Now, physically, two objects are shrunk and glued together. The analytical
expression for the backward map ĝ : ΩT 7→ ΩR is given by

ĝ1(x1, x2) =


1
cx1 − d x1 > d
1
cx1 + d x1 < −d
0 −d ≤ x1 ≤ d

, ĝ2(x1, x2) =
1

c
x2. (5.78)

Template (T) R(gc) R and ĝ R and gc

ef̂ (gc) = 36.96%

Reference (R) R(gn) p R and gn

eĝ(gn) = 6.04%

Figure 5.9: Backward maps and registered images based on an academic ex-
ample. The regularization parameter α = 104 for the CIR model,
and (α, β) = (24, 24) for the NCIR model. The display range for
images is [0,1].

One of the primary concerns is the mapping of particles lying on the crack zone
in the image T , shown in Fig. 5.9. The CIR model, due to its basic assump-
tion of correspondence everywhere, establishes a mapping with the background
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particles on the image R. That is why the grid gc bends towards the top and
bottom of the image in the very center of the image. The backward map gc
has a percent error of 36.96%. On the other hand, the phase field masks the
crack region in the image T and reduces its influence in the non-crack region.
Moreover, lower stiffness allows a large volume shrinkage in the crack region.
The gn grid moves towards the center of the image following the path of nearby
regions, and achieves a percent error of 6.04%.

The deformed image R(gc) is quite different from the image T . However, the
deformed image R(gn) is dissimilar to image T majorly in the crack zone due
to a continuous spline function used to interpolate the image R at gn.

5.7.2 Study of Regularization Parameters

β = 102

p

β = 103 β = 104 β = 105

T
an

d
f
n

ef̂ (fn) = 35.54% ef̂ (fn) = 8.73% ef̂ (fn) = 3.46% ef̂ (fn) = 5.23%

Figure 5.10: Phase field functions and deformation fields with a fixed stiffness
and varying toughness parameters. The display range for phase
field function p is 0 to 1.

The regularization parameters are crucial factors to decide the efficacy of varia-
tional models. In the NCIR model, we mainly tune two regularization parame-
ters, i.e., a stiffness constant α, and a toughness constant β. In this section, we
perform experiments using the intensity-preserving images as shown in Fig. 5.7.

Fig. 5.10 displays variation in the phase field and the deformation field with a
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fixed stiffness and varying toughness parameter. Following the equation (5.17),
the optimal phase field p̂ is inversely proportional to the toughness parameter,
and approximately directly proportional to the sum of the similarity measure
and the elastic energy. If the toughness parameter is low, the phase field attains
a high value. Therefore, as a general observation in Fig. 5.10, the phase field
is decreasing as the toughness parameter is increasing. Physically, toughness
reflects breakability of a material. As toughness is increasing, the material
becomes harder to break, and the possibility of a damage is lower. Therefore,
the phase field, which reflects the damage in the material, also decreases with
increasing toughness. At a very high toughness, the phase field approaches to
zero, and the NCIR model behaves similarly to the CIR model.

During the initial iterates of the optimization problem associated with the NCIR
model, the similarity measure is usually high due to the non-correspondences
between the given images. If the similarity measure is quite high and the tough-
ness parameter is low, the phase field would attain a high value. Consequently,
the phase field masks the regions wherever the similarity measure is high. In
turn, the driving forces become inactive in that region, and optimization process
stops early. That’s why, in Fig. 5.10, the phase field is high in the non-crack
regions as well as in the crack region due to low toughness parameter. In other
words, the NCIR model can consider the non-crack region as a crack region if
the toughness parameter is too low.
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Figure 5.11: Error plot for forward and backward map.

The error plots, shown in Fig. 5.11, demonstrate the sensitivity of the NCIR
model with respect to the regularization parameters. At a fixed stiffness, we
observe a safe zone where the forward map percent error is small and varies
approximately 5% for a range of toughness parameters, as can be seen from
Fig. 5.11(a) and Fig. 5.10. Moreover, there is a sharp transition in the per-
cent error at the boundary of the safe zone. The percent error is small mostly
when β ≥ α, which can be used as a basic guideline to choose regularization
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parameters for the NCIR model.

The safe zone for the backward map is quite narrow and it has steep transitions
at a fixed stiffness parameter, as shown in Fig. 5.11(b). However, there are a
number of (α, β) pairs where the percent error is small, but mostly concentrated
around α = β. Therefore, a starting parameter choice to estimate the backward
map could be α = β.

The parameter choice may also depend on the width of the crack and other
features in the image. Moreover, the parameter choice may become difficult if
the opening and closing of a fracture happen simultaneously in a reference image.
In this case, as per our observations, α = β could be a starting parameter choice.

5.7.3 Internal Length Analysis
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Figure 5.12: Internal length analysis. (a) Phase field variation with internal
length. (b) Illustrate mesh size effect on the phase field at inter-
nal length l=0.125. (c) Interdependency of internal length and
domain size (-D,D) where x ∈ (−1, 1).

The internal length is a physical scalar, which has been introduced in the NCIR
model to satisfy the dimensions of the energy functional. The internal length
controls contributions from the non-local dissipation energy that penalizes jumps
in the phase field function. A zero internal length nullifies the effect of non-local
energy, and hence phase field function may consist of a set of jumps. In all of
our numerical experiments (except this section), the internal length is zero and
we observed satisfactory registration results. We do not know the exact use of
the jump penalization term in the perspective of image registration yet.

Nevertheless, it is worthwhile to investigate the effect of the internal length on
the image registration. The internal length is a physical quantity, and hence
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this should not depend on the discretization, i.e., the mesh size. However, the
internal length depends on the domain size of the image with a constant factor.
In this section, we illustrate our findings through numerical experiments.

We perform experiments on the images as shown in Fig. 5.7. We fix the regular-
ization parameters (α, β) = (600, 2×104). The domain size is 2×2 square unit.
Fig. 5.12(a) displays a one-dimensional horizontal cross-section of the phase field
function at multiple values of the internal length. The phase field is large at
x = 0, the location of the crack interface. It appears that the phase field be-
comes smoother with increasing internal length, but the area under the curve
is approximately the same for all line profiles, i.e., around 0.1, except for zero
internal length. The diffusivity of phase field affects the accuracy of deformation
field estimate. Therefore, zero internal length seems to be the best candidate to
approximate a precise phase field.

Fig. 5.12(b) displays the phase field line profiles at different mesh sizes for a fixed
internal length, i.e., l = 0.125. All line profiles are overlapping on each other
which verifies that the internal length is independent of domain discretization
resolution. Fig. 5.12(c) displays the phase field line profiles with varying domain
size and internal length. The line profiles are similar if the internal length varies
in a fixed proportion to the size of the domain.

5.7.4 Mass-preserving Registration

R T

Figure 5.13: Mass preserved images R and T for image registration. The
display range for images is 0 to 1.

Our next academic example, as shown in Fig. 5.13, represents a mass-preserving
application where the total mass of an object remains preserved during the
deformation. Like our previous examples, the object, represented in the image
R, breaks into two parts during stretching, but the density of the object reduces
proportional to its stretching factor to preserve the total mass of the object.
That is why the intensity of the template image is low. The suitable similarity
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measure for a mass-preserving application is

S(x, f, T,R) =
1

2

(
T (f(x)) det(∇f(x))−R(x)

)2

, (5.79)

where the determinant of the Jacobian, det(∇f(x)), measures the local change
in volume.

The analytical forward map f̂ and backward map ĝ for the mass-preserving
example is identical to the intensity preserving example, as defined in (5.77)
and (5.78) respectively. Fig. 5.14 and Fig. 5.15 display registered images, de-
formation fields, and a phase field. The intensity of the deformed template
image is similar to the reference image which verifies the potential of the mass-
preserving similarity measure. Surprisingly, the NCIR model behaviour for this
mass-preserving example is similar to the behaviour for intensity-preserving ex-
ample. We do not recognize any substantial influence of mass-preservation on
the deformation field estimate.

Reference (R) T (fc) det(∇fc) T and f̂ T and fc

ef̂ (fc) = 8.27%

Template (T) T (fn) det(∇fn) p T and fn

ef̂ (fn) = 1.84%

Figure 5.14: Forward maps and registered images based on the mass-
preserving example. The regularization parameter α = 700 for
CIR model, and (α, β) = (40, 3500) for the NCIR model. The
display range for images is [0,1].
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Template (T) R(gc) det(∇gc) R and ĝ R and gc

eĝ(gc) = 30.38%

Reference (R) R(gn) det(∇gn) p R and gn

eĝ(gn) = 10.98%

Figure 5.15: Backward maps and registered images based on the mass-
preserving academic example. The regularization parameter
α = 2 × 103 for CIR model, and (α, β) = (24, 14) for NCIR
model. The display range for images is [0,1].

5.8 Conclusion

Image registration models are often based on the assumption that every feature
in a reference image has a suitable match in the template image. But, the
assumption, correspondence everywhere, may fail in real-world applications. In
this work, we illustrated two non-corresponding scenarios with their underlying
physical characteristics. The deformation field has jump discontinuities and non-
smooth characteristics, depending on the forward and backward map associated
with the problem concerned with a crack formation. However, deformation
fields, associated with the images with missing structures, are smooth in non-
corresponding regions. We have proposed an image registration model for images
with cracks, borrowing ideas from damage mechanics where a crack is identified
through the stiffness loss of a material. We further analysed the first order
optimality condition of the proposed objective function to point out limitations
of the model and to explain the role of the regularization parameters with their
physical meaning.

Our experimental results indicate that our model effectively identifies a crack
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zone and simultaneously estimates regularised large deformations in the crack
region. Moreover, deformations in the non-crack region are minimally influenced
from the large deformations in the crack region. We analysed the sensitivity of
the regularization parameters, which could be helpful to select parameters for
real-world applications. The successful registration for intensity-preserving and
mass-preserving phantoms demonstrate the wide applicability of our proposed
model.
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Chapter 6

Implicit Reference based
Motion-Compensated

Reconstruction from Metallic
Angle Interlaced Projections

Recently, Mohan et al. [Mohan15] have shown that the distribution of pro-
jection views over time, particularly based on an interlaced sampling scheme,
enhances the quality of images reconstructed with a temporal regularized re-
construction model for dynamic computerized tomography (CT). To the best
of our knowledge, the importance of the sampling scheme has not been em-
phasized for reconstructions with a motion-compensated (MC) reconstruction
model. Major interlacing schemes are not fixed angular gap sampling (FAS)
schemes, hence not easy to implement in practice. Moreover, the existing inter-
laced FAS schemes are not suitable to scan fast-moving objects. In section 6.1,
we propose an interlaced FAS scheme based on the family of metallic angles and
conduct a preliminary study to demonstrate the effectiveness of the proposed
scheme for reconstructions with a reference based MC reconstruction model. In
chapter 3, we discuss the state-of-the-art sampling schemes and reconstruction
models for dynamic CT.
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The reference image based MC reconstruction models have been popular from
the last decade for different dynamic imaging modalities, e.g., CT, MRI, PET,
SPECT, etc. [McClelland17; Suhr15; Liu15; Hinkle12; Eyndhoven12; Blume12;
Blume10; Chun09]. The need for invertibility of a deformation map naturally
arises in the MC reconstruction to project back information from a given time
frame to the reference frame. Therefore, an admissible deformation map should
be a continuously differentiable function whose Jacobian determinant is nonzero
almost everywhere, and is thus locally invertible and has a one-to-one corre-
spondence. Moreover, in order to avoid local folding, i.e., for an orientation-
preserving deformation map, the Jacobian determinant is assumed to be strictly
positive almost everywhere. Although, the invertibility is important, this has
been addressed in very few studies related to the MC reconstruction [Suhr15;
Hinkle12; Chun09]. Otherwise, the invertibility is ensured by adjusting regu-
larization parameters for the deformation map regularizer [Blume12; Blume10].
Moreover, these studies dealt with small deformations with respect to the refer-
ence image and deformations are assumed to be smooth locally. In this work, we
use a recently proposed hyperelastic regularizer [Burger13] for the deformation
map that guarantees a positive Jacobian determinant almost everywhere. Even
though, a MC reconstruction model guarantees an invertible map, the most
popular existing numerical schemes [Chen07; Christensen01b] to compute an
inverse of an invertible function does not guarantees that the computed inverse
function has a positive determinant almost everywhere, and it is a one-to-one
map. In this work, our numerical scheme guarantees that the computed inverse
of a function has a positive Jacobian determinant almost everywhere.

The reference image in the reconstruction model either represent the physi-
cal state of an object at a fixed time [McClelland17; Suhr15; Eyndhoven12;
Chun09], e.g., a breath-hold state of a patient, or it represents a virtual state
[Liu15; Blume10]. The time-dependent state is also known as an explicit refer-
ence frame (ERF) and the time-independent state or the virtual state is known
as an implicit reference frame (IRF) in the image registration community. The
IRF modelling eliminates bias towards a fixed physical state of an object and
gathers knowledge from the entire dataset; this has been studied in the group-
wise image registration community [Geng09]. However, the benefit of an IRF
modelling has not been analysed thoroughly for the MC reconstruction in dy-
namic CT. Although the underlying principle behind the IRF and ERF mod-
elling are different, the IRF based MC reconstruction model can be utilized for
the ERF modelling by setting deformation map at some fixed time to an identity
map.

In section 6.2, we present our model assumptions for X-ray measurements and
in section 6.3, we explain an IRF based motion model. Thereafter, in section
6.4, we develop an IRF based MC reconstruction model for dynamic CT, and
discuss a numerical scheme following the discretize-then-optimize approach in
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section 6.5, and explain optimization algorithm in section 6.6. In section 6.7, we
conduct a preliminary study to demonstrate the effectiveness of the proposed
scheme based on a simulated dataset and perform a singular value decomposition
(SVD) analysis to recognize limitations of a reference based MC reconstruction
model in view of large and highly non-linear deformations over time. Section
6.8 conclude our findings.

6.1 Metallic Angle based Interlaced Sampling
Scheme

The golden angle based fixed angular sampling (FAS) scheme is quite popular in
the applications of neutron microtomography [Münch11]. The sampling pattern
is aperiodic in this scheme and the angle between two consecutive projections
is always approximately 137◦. This is quite a large angular range to cover in
a limited time, depending on the rotational speed of a gantry. The centripetal
force acting on the rotating frame of a CT scanner limits the maximum possible
speed of a gantry. Therefore, a gantry may not cover the angular range within
the desired temporal resolution for a dynamic CT application. Therefore, the
golden angle based FAS scheme is suitable only for slowly moving objects where
a gantry can rotate multiple times around the object to acquire a sufficient
number of projections to achieve a high spatio-temporal resolution.

The FAS scheme is easy to implement in practice. Therefore, a FAS scheme with
an aperiodic scanning pattern, as it is for a golden angle based scheme, but with
a smaller angular gap could be useful to scan a fast-moving object. In this work,
we propose a fixed angular gap interlaced sampling scheme with smaller angular
gaps based on the family of metallic angles where the golden angle is also a part
of this family. The metallic angles are based on metallic means; hence we first
introduce the family of metallic means in the next section.

6.1.1 Metallic Means

The family of metallic means [Spinadel99] comprises quadratic irrational num-
bers that is the positive solution of the algebraic equation

φ2 − nφ− 1 = 0 (6.1)
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where n is a natural number. The positive root of (6.1) is given by

φn =
n+
√
n2 + 4

2
. (6.2)

The metallic mean φ1 is known as the golden mean or golden ratio, φ2 is known
as the silver ratio, and φ3 is known as the bronze ratio.

The golden ratio has a simple geometrical interpretation. If a and b are two
quantities with a > b > 0, the golden ratio is the ratio of the larger quantity a
to the smaller quantity b if this ratio is equal to the sum of these two quantities
to the larger quantity, i.e.,

φ1 =
a

b
=
a+ b

a
. (6.3)

The last two expressions in (6.3) form the quadratic equation x2 − x − 1 = 0
where x = a/b. The positive root of this quadratic equation is equal to φ1.

This geometrical interpretation motivated us to represent a metallic mean in
the following way

φn =
a

b
=
na+ b

a
. (6.4)

where the last identity forms the quadratic equation (6.1). In the next sec-
tion, we define metallic angles utilizing these geometrical interpretations on the
circumferences of a circle.

6.1.2 Metallic Angles

If the circumference of a circle is divided into two segments a and b with a >
b > 0 such that segments length satisfy (6.3), the golden angle is the angle
subtended by the smaller arc of length b at the center of the circle. The golden
angle ψ1 utilizing (6.3) is computed as

ψ1 = 2π
b

a+ b
= 2π

1

1 + φ1
≈ 2.39996 rad. (6.5)

Similarly, if segments of a circumeference of a circle satisfies (6.4), the metallic
angle is defined as the angle subtended by the smaller arc at the center, i.e.,

ψn = 2π
b

a+ b
= 2π

1

1 + φn
. (6.6)

Table 6.1 lists the first few metallic ratios and the corresponding metallic angles.
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Table 6.1: First eight metallic ratios and metallic angles.

n φ ψ (rad) ψ (degree) n φ ψ (rad) ψ (degree)
0 1 3.1416 180◦ 4 4.2361 1.1999 68.7539◦

1 1.6180 2.3999 137.5078◦ 5 5.1926 1.0146 58.1341◦

2 2.4142 1.8403 105.4416◦ 6 6.1623 0.8773 50.2633◦

3 3.3028 1.4603 83.6669◦ 7 7.1401 0.7719 44.2257◦

6.1.3 Fixed Angular Gap Interlaced Sampling Scheme

Similar to the golden angle based FAS scheme, we define a kth view angle

θkn = kψn mod 2π, k ∈ N, (6.7)

where ψn is a metallic angle as defined in (6.6); this is an angular gap be-
tween two consecutive projections. In one full rotation, there will be total Nn
projections with Nn given by

Nn =

⌊
2π

ψn

⌋
= b1 + φnc = n+ 1. (6.8)

Therefore, if Np is the desired number of projections in a rotation, one should
choose a metallic angle ψn with n = Np − 1.

The sampling scheme based on (6.7) has following properties :

• Fixed Angular gap:

The angular gap between two consecutive projections is always ψn, there-
fore the proposed sampling scheme is a FAS scheme. Hence, it is easy to
implement in practice.

• Aperiodic Pattern:

The sampling pattern is aperiodic, hence, ideally, each projection provides
new information about the object of interest. We can easily prove our
aperiodicity claim by the proof of contradiction, considering the fact that
the metallic ratio φn is an irrational number except for n = 0. If the
sampling pattern is periodic, the following identities must be true, i.e.,

mψn = ψn + 2kπ, m, k ∈ N
ψn
2π

=
k

m− 1
,

φn =
m− 1

k
− 1.
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According to this identity, φn should be a rational number but this is a
contradiction.

• Interlaced Sampling:
Fortunately, interlacing behavior comes out naturally from the metallic
angle based sampling pattern as shown in Fig. 6.1. Suppose, we acquire
in total 24 projections during an experiment. If we intend to reconstruct
3 image frames with 8 projections per frame covering one full rotation,
the fixed angular gap between two consecutive projections should be ψ7,
using the expression (6.8), for the complete experiment. The Fig. 6.1(a)
displays the sampling pattern with ∆θ = ψ7 wrapped around 2π. The
projection angles for two consecutive frames are different; moreover they
are interleaved. The Fig. 6.1(b) displays a sampling pattern when we
intend to reconstruct 4 frames in the same amount of time to increase the
temporal resolution.

1 8 16 24
0

π

2π

time

θ

(a) 3 Frames, ∆θ = ψ7

1 6 12 18 24
0

π

2π

time

θ

(b) 4 Frames, ∆θ = ψ5

Figure 6.1: Distribution of 24 projection views over time based on the metallic
angle based interlacing scheme. (a) displays distributions in 3 full
cycles, and (b) displays distributions in 4 full cycles.

6.2 System and Measurement Model

An X-ray source illuminates a deforming object that is characterized by its
spatio-temporal attenuation function µ(x, t) : Ω ⊂ R2 × R 7→ R, where the spa-
tial coordinate x = [x1, x2] is a physical point in the two-dimensional domain
and t represents a temporal coordinate. A one-dimensional detector array with
r elements acquires the attenuated X-rays from p projections. The data acquisi-
tion time for the complete experiment is T sec. The detector exposure time for
one projection, i.e., Te sec., is less than the gantry rotation time between two
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consecutive projections, i.e., T/p sec. The average X-ray source photon flux is
I0 photons/sec. We assume that the measurement yij , obtained with detector i
and projection j, is a sample of a Poisson random variable Yij whose mean is
prescribed by the Lambert-Beer law, i.e.,

Yij = yij | µ(x, t) ∼ Poisson

(
I0Te exp

(
−
∫
lij

µ(x, t)dx

))
(6.9)

where lij denotes the line segment between the ith detector element and the
source for projection j.

6.3 Implicit Reference based Motion Modelling

µ(x, t1) = R(ft1 (x)) µ(x, t2) = R(ft2 (x)) µ(x, t3) = R(ft3 (x))

?
Reference R

ft1 ft2 ft3

Figure 6.2: Illustration of the implicit reference based motion modelling.

We assumed that a physical state of an object at time t is a deformed configu-
ration of an implicit reference frame R : Ω ⊂ R2 7→ R, i.e.,

µ(x, t) = R(ft(x)) (6.10)
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where ft : Ω ⊂ R2 7→ R2 is a continuously differentiable deformation map and
has a one-to-one correspondence, almost everywhere, at time t. Each physical
point in the reference image R has a unique match in the image µ at all instants
of time. The motion model (6.10), due to our underlying assumptions, is not
suitable for deformations like crack formations, described by a jump disconti-
nuity in the deformation map, or closing of a crack, described by a non-smooth
continuous deformation map, as illustrated in chapter 5.

Fig. 6.2 illustrates the motion modelling graphically. Assuming a locally invert-
ible deformation map, the reference image can also be represented in terms of
each image in the image sequence that represents a deforming object, therefore
the reference frame satisfies the following identity, i.e.,

R(x) =
1

K

K∑
i=1

µ(f−1
ti (x), ti). (6.11)

Generally, there is more than one f that satisfies (6.10), therefore regulariza-
tion of a deformation map becomes utmost important to restrict the solution
space. We do so with the recently proposed hyperelastic energy regularizer
[Ruthotto15], i.e.,

E(f) =

∫
Ω

1

2
αl‖∇(f − fref)‖22 + αvϕ(det(∇f(x))) (6.12)

where ϕ(v) = (v−1)4/v2, αl, and αv are regularization parameters and fref rep-
resents an initial configuration. They regularize deformation locally by control-
ling the change in displacement and the change in local volume simultaneously.
The regularizer (6.12) guarantees a positive Jacobian determinant almost ev-
erywhere by attaining infinite energy for non-diffeomorphic deformations. The
positive Jacobian determinant ensures an orientation-preserving and one-to-one
map that is desirable to fulfill our model assumptions. Moreover, this is an
appropriate regularizer for large and non-linear deformations.

After incorporating the motion model (6.10), the expression (6.9) yields

Yij = yij | R, ft ∼ Poisson

(
I0Te exp

(
−
∫
lij

R(ft(x)) dx

))
. (6.13)

Note that, the measurement yij is conditioned on a deformation map ft and a
reference frame R.

For ease of notation, we define a linear operator Aij which represents the line
integral of a function along the line lij . The linear operator Tft , with respect to
R, is defined as

TftR(x) = R(ft(x)).
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Following these notations, we can express (6.13) as

Yij = yij | R, ft ∼ Poisson (I0Te exp (−AijTftR)) . (6.14)

6.4 Motion-Compensated Reconstruction Model

We consider that an image sequence of K reconstructed frames represent the
evolution of an object with time. We assume that the object is deforming during
an experiment and a gantry is rotating fast such that the object movement is
assumed to be stationary while acquiring p consecutive projections over a full
cycle. A detector array of r elements acquire total Np = K × p projections
during the complete experiment. We divide measurements in K groups where
each group has r × p measurements. We add another subscript to represent a
measured data, i.e., yijk, for the kth group and represent them in total by a
vector yk = (y11k, . . . , yrpk).

Measurement samples are independent, therefore we can define the joint prob-
ability of measurements for the kth group, using (6.14), as

P(yk | R, fk) =

r∏
i=1

p∏
j=1

(I0Te exp(−AijkTfkR))yijk

yijk
exp(−AijkTfkR). (6.15)

Likewise, the joint probability of the complete set of measured data is given by

P(y1, . . . , yK | R, f1, . . . , fK) = P(y1 | R, f1)× · · · × P(yK | R, fK). (6.16)

According to Bayes’ rule, the joint posterior distribution of unknown parameters
is given by

P(R, f1, . . . , fK | y1, . . . , yK) ∝ P(y1, . . . , yK | R, f1, . . . , fK) P(R) P(f1, . . . , fK).
(6.17)

assuming the reference image R and deformation maps ft are independent of
each other.

We define prior distribution on deformation fields in the form

P(f1, . . . , fK) =

K∏
k=1

P(fk) ∝
K∏
k=1

exp(−αE(fk)), (6.18)
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where α is a regularization parameter and E is defined in (6.12), and prior
distribution on R in the form

P(R) ∝ exp(−γφ(R)) (6.19)

where φ is a convex function with respect to R and γ is a regularization pa-
rameter. The combination of nonnegativity constraint and total variation (TV)
approximated regularization is expressed as

φ(R) = I+(R) + TVε(R) (6.20)

where

TVε(R) =

∫
Ω

ψ(||∇R)||2) dx, (6.21)

and ψ(t) is a Huber loss function with smoothing parameter ε. I+(R) denotes
the indicator function of the nonnegative orthant.

A maximum a posteriori (MAP) estimate of unknowns is given by

(R̂, f̂1, . . . , f̂K) = argmin
(R,f1,...,fK)

{
− log P(R, f1, . . . , fK | y1, . . . , yK)

}
,

= argmin
(R,f1,...,fK)

{
D(R, f1, . . . , fK) + S(R) + E(f1, . . . , fK)

}
.

(6.22)

where

D(R, f1, . . . , fK) =

K∑
k=1

r∑
i=1

p∑
j=1

yijkAijkTfkR+ I0Te exp(−AijkTfkR), (6.23)

S(R) = γφ(R), (6.24)

and

E(f1, . . . , fK) = α

K∑
k=1

E(fk). (6.25)

The (6.22) is a convex minimization problem in R given deformation fields f ,
but it is a non-convex problem in deformation fields f given R. Moreover, the
problem (6.22) is separable in the deformation fields and can be minimized in
an alternating fashion, i.e.,

Rm = argmin
R
D(R, fm−1

1 , . . . , fm−1
K ) + S(R) (6.26)

fmk = argmin
fk

D(Rm, fk) + E(fk), k = 1, . . . ,K. (6.27)
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6.5 Numerical Implementation

Figure 6.3: A two-dimensional grid: cell-centered xc ( ), nodal xn ( ), and
staggered xs ( )

.

We follow the discretize-then-optimize approach to solve the MAP estimation
problem (6.22). We discretize a two-dimensional image domain Ω = (−sz, sz)×
(−sz, sz) into n× n cells of width h as shown in Fig. 6.3. Let xc denote a cell-
centered grid and xn denote a nodal grid. We discretize reference function R on
the cell-centered grid and represent it by Rh ∈ Rn2

. Whereas, the deformation
field f = (f1, f2) is discretized on the nodal grid and represented by fh =

((fh)1, (f
h)2) ∈ R2(n+1)2 .

We approximate the continuous function R over the mth cell with its function
value at the cell-centered grid xcm; and the line-integral over a cell is approxi-
mated as, ∫

lm

R(f(x)) dx ≈ whmR(f(xcm)) (6.28)

where whm is length of the intersection of the slab l with themth cell. The weights
wh are stored component-wise in a row vector Ahij ∈ R1×n2

corresponding to
the line integral along lij .

The computation of R(f(xcm)) on the cell-centered point of a mth cell consists
of two steps. First, we interpolate the discretized deformation field fh on the
cell-centered point xcm to compute fh[xcm], and afterward we interpolate the
discretized reference functionRh at fh[xcm] to computeRh[fh[xcm]]. Therefore,
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the approximated line-integral, utilizing (6.28), is represented as,∫
lij

R(f(x)) dx = AijTfR =

n2∑
m=1

∫
(lij)m

R(f(x)) dx

≈
n2∑
m=1

whmR(f(xcm))

≈
n2∑
m=1

whmR
h[fh[xcm]]

= AhijTfhR
h (6.29)

where (TfhR
h)[xcm] = Rh[fh[xcm]].

The discrete form of the data fidelity function (6.23), utilizing (6.29), is repre-
sented as

D[Rh, fh1 , . . . , f
h
K ] =

K∑
k=1

r∑
i=1

p∑
j=1

yijkA
h
ijkTfhkR

h + I0Te exp(−AhijkTfhkR
h),

(6.30)

and the gradients of D are

∇D[Rh] =

K∑
k=1

r∑
i=1

p∑
j=1

Tfhk
TAhijk

T
(yijk − ŷijk), (6.31)

∇2D[Rh] =

K∑
k=1

r∑
i=1

p∑
j=1

Tfhk
TAhijk

T
ŷijkA

h
ijkTfhk , (6.32)

∇D[fhk ] =

r∑
i=1

p∑
j=1

(
∂TfhkR

h

∂fhk

)T
Ahijk

T
(yijk − ŷijk), (6.33)

∇2D[fhk ] ≈
r∑
i=1

p∑
j=1

(
∂TfhkR

h

∂fhk

)T
Ahijk

T
ŷijkA

h
ijk

∂TfhkR
h

∂fhk
(6.34)

where ŷijk = I0Te exp(−AhijkTfhkR
h).

The first derivative of D with respect to Rh, as defined in (6.31), requires the
adjoint of the transformation operator Tf . According to the definition of an
adjoint operator, i.e.,

〈Tfµ, g〉 =
〈
µ, TTf g

〉
,

⇒
∫

Ω

µ(f(x))g(x) dx =

∫
f(Ω)

µ(x)g(f−1(x))
1

det(∇f)(f−1(x))
dx
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the adjoint of a transformation operator T is given by,

TTf g(x) =
g(f−1(x))

det(∇f)(f−1(x))
= g(f−1(x))det(∇f−1)(x) (6.35)

where the last identity arises from the inverse function theorem and Jacobian
determinant of f is assumed to be positive.

Remark 1: A non-zero condition on the Jacobian determinant of f : Ω 7→ R2

guarantees that, for every point p in Ω, there exists a neighborhood around p
over which f is invertible. But, this does not mean that f is invertible over its
entire domain. We impose a Dirichlet boundary condition on f such that the
displacement along the boundary is zero. As a result, the image of function f
restricts to a domain Ωf ⊂ R2 if Jacobian determinant of f is positive almost
everywhere in Ω. Hence, we can guarantee that f : Ω 7→ Ωf is globally invertible
over its entire domain, where f−1 : Ωf 7→ Ω is the inverse function.

We use the midpoint quadrature rule to compute the integral in the expression
(6.21), i.e.,

TVε(R) =

∫
Ω

ψ(||∇R)||2) dx

≈ h2
n2∑
m=1

ψ(||∇R(xcm)||2)

≈ h2
n2∑
m=1

ψ(||DmR
h||2)

= TVh
ε [Rh] (6.36)

where Dm is the 2D discrete derivative operator, defined as,

Dm =

[
eTm(In ⊗ D̄n)
eTm(D̄n ⊗ In)

]
where In is an identity matrix, and D̄n is a 1D discrete derivative operator,
defined as,

D̄n =
1

2h


−1 1
−1 0 1

. . . . . .
−1 0 1

−1 1

 ∈ Rn×n

assuming Dirichlet boundary conditions.
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The discretize form of the regularizer S(R) as defined in (6.24), utilizing (6.20)
and (6.36) is represented as

S[Rh] = I+(Rh) + γTVh
ε [Rh]. (6.37)

We also use the midpoint quadrature rule to compute the expression (6.12), i.e.,

E(f) =

∫
Ω

1

2
αl‖∇(f(x)− fref(x))‖22 + αvϕ(det(∇f(x))) dx

≈ h2
n2∑
m=1

1

2
αl‖∇(f(xcm)− fref(xcm))‖22 + αvϕ(det(∇f(xcm)))

≈ h2

(
αl
2

(fh − fhref)
TBh

T
Bh(fh − fhref) + αvϕ(det(∇fh))

)
= E[fhk ] (6.38)

where Bh is a discrete derivative operator, defined as,

Bh =


I(n+1) ⊗ B̄n
B̄n ⊗ I(n+1)

I(n+1) ⊗ B̄n
B̄n ⊗ I(n+1)

 ∈ R4n(n+1)×2(n+1)2

where In is the identity matrix. B̄n is a one-dimensional short central finite
difference operator, defined as,

B̄n =
1

h

−1 1
. . . . . .

−1 1

 ∈ Rn×(n+1).

The components of the gradient of f1 and f2 are approximated at different
locations on staggered grids because of the desired second order approximation
of partial derivatives of f = (f1, f2). The finite difference approximation is not
appropriate to approximate Jacobian determinant

det(∇f(x))(x) = ∂1f1(x)∂2f2(x)− ∂2f1(x)∂1f2(x)

because the determinant couples partial derivatives approximated at different
locations. Therefore, Burger et al. suggested to approximate det(∇f(x)) by
measuring volume changes on a voxel based on a tetrahedral partition. We
refer readers to the original work by Burger [Burger13] for a detailed descrip-
tion related to discretization and partial derivatives of the hyperelastic energy
regularizer E(f).
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The discrete form of the regularizer E as defined in (6.25), utilizing (6.38), is
represented as

E[fh1 , · · · , fhK ] = α

K∑
k=1

E[fhk ]. (6.39)

To summarize, the discretized objectiove functional of (6.22) is expressed as,

J[Rh, fh1 , . . . , f
h
K ] = D[Rh, fh1 , . . . , f

h
K ] + S[Rh] + E[fh1 , . . . , f

h
K ]. (6.40)

6.6 Algorithms

We minimize the objective function (6.40) with respect to Rh and fh in an
alternating fashion, i.e.,

(Rh)m = argmin
Rh

D[Rh, (fh1 )m−1, . . . , (fhK)m−1] + S[Rh] (6.41)

(fhk )m = argmin
fhk

D[(Rh)m, fhk ] + E[fhk ], k = 1, . . . ,K. (6.42)

We use different optimization algorithms to estimate the reference image Rh
and the deformation maps fh which we will explain in this section in detail.

The gradient of D with respect to Rh involves the adjoint of the transformation
operator T , defined in (6.35), that require an inverse of the deformation map
fh. We compute the inverse with an iterative scheme.

6.6.1 Inverse of a Deformation Map

Suppose, a deformation map f : Ω 7→ Ωf and a function g : Ωf 7→ Ω satisfy the
identity

z = f(g(z)), z ∈ Ωf , (6.43)

then the function g is called an inverse function of f .

The estimation of the inverse function g is a root finding problem, which is
expressed by rewriting (6.43) as

f(g) = z − f(g(z)) = 0. (6.44)
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We define an iterative sequence to solve the problem (6.44), motivated from
[Chen07; Christensen01b], i.e.,

gk+1 = gk + αf(gk), (6.45)

where α is a step-size chosen such that

f(gk+1) ≤ f(gk) and det(∇gk) > 0

to ensure an orientation preserving and a one-to-one function g.

In practice, (6.45) works satisfactorily with a good initial guess g0. In order to
compute g0, we triangulate the domain Ω. Suppose, a triangle T ⊂ Ω deforms
to a triangle Tf ⊂ Ωf , then we can compute barycentric coordinates (b1, b2, b3)
of a point z ∈ Tf with respect to the triangle Tf such that

z =

3∑
i=1

biy
h
i ,

where yh1 , yh2 , yh3 are the vertices of the deformed triangle Tf . Utilizing these
barycentric coordinates, we can approximate the inverse function g0, correspond-
ing to the point z by defining

g0(z) =

3∑
i=1

bix
h
i

where xh1 , xh2 , xh3 are the vertices of the triangle T in the domain Ω.

6.6.2 Reference Frame Estimation

The objective function (6.40) with respect to Rh is given by

J[Rh] = D[Rh] + S[Rh]. (6.46)

The gradient of D[Rh] is Lipschitz continuous because the norm of Hessian
∇2D[Rh] defined in (6.32) satisfies the following inequalities, i.e.,

‖∇2D[Rh]‖2 =

K∑
k=1

r∑
i=1

p∑
j=1

Tfhk
TAhijk

T
ŷijkA

h
ijkTfhk

≤
K∑
k=1

r∑
i=1

p∑
j=1

‖Tfhk ‖
2
2‖Ahijk

T
ŷijkA

h
ijk‖2 (6.47)
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and the approximated Lipschitz constant L is given by

L =

K∑
k=1

r∑
i=1

p∑
j=1

‖Tfhk ‖
2
2‖Ahijk

T
yijkA

h
ijk‖2.

The function TVh
ε [Rh] also has a Lipschitz continuous gradient with constant

Ltv(ε) = ‖D‖22/ε where D = [DT
1 · · ·DT

n2 ]T . Therefore, J[Rh] is differentiable
with Lipschitz continuous gradients on the nonnegative orthant, and hence we
can apply a proximal gradient method which is suitable for minimizing problems
of the form

minimize
u

g(u) + h(u).

Here g : Rn2 → R is convex with a Lipschitz continuous gradient with Lipschitz
constant Lg, h : Rn2 → R is convex, and the prox-operator

proxth(ū) = argmin
u

{
th(u) +

1

2
‖u− ū‖22

}
is assumed to be cheap to evaluate. We will define g(u) = D(u) + γTVε(u) and
h(u) = I+(u), and hence the Lipschitz constant is given by LJ = L + γLtv(ε).
Given a starting point u(0) and a fixed number of iterations K, the algorithm
can be summarized as

u(k) = proxth(u(k−1) − t∇g(u(k−1))), k = 1, 2, . . . ,K

where t ∈ (0, 2/LJ) is the step size and proxth(ū) = max(0, ū) is the projection
onto the nonnegative orthant. With this step size, the method is a descent
method.

6.6.3 Motion Estimation

The objective function (6.40) with respect to fhk is given by

J[fhk ] = D[fhk ] + E[fhk ]

and it is a non-convex function. We use the Gauss-Newton optimization algo-
rithm to compute a local minimizer with a multilevel strategy. First, we compute
the minimizer on a coarse discretization, which serves as a starting guess for the
optimization problem at a finer level. Given a starting point (fkh )0, the iterative
sequence is given by

(fkh )m = (fkh )m−1 − s∆fhk
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where we use Armijo backtracking line search method to compute the step size
s and solve a linear system

H ∆fhk = ∇J[(fkh )m−1] (6.48)

for ∆fhk where H is an approximated Hessian matrix at (fkh )m−1. Following
the remark 1 6.5, we incorporate the Dirichlet boundary conditions for fkh by
modifying the rows and columns of the Hessian matrix H such that ∆fkh = 0 at
the boundary nodes.

6.7 Numerical Results

We conduct a series of experiments based on the simulated data to evaluate the
performance of the proposed sampling scheme with the motion-compensated
reconstruction model. In these experiments, we used a parallel beam geometry
with a 2 cm wide photon counting detector array with 64 detector elements.
The measurements with the object were generated according to (6.9) using a
2N × 2N pixel discretization of a 2D phantom defined on a 4 cm2 domain. To
avoid inverse crimes, we computed our reconstructions on an N ×N (N = 64)
pixel grid. The value of the TV-smoothing parameter ε was 0.01 cm−1 in all
experiments with the TV-prior. We determine the parameter γ for the TV-
prior based on subjective visualization. We used the ASTRA Toolbox (version
1.7.1beta) to implicitly compute products with A and AT on a GPU.

We use a linear interpolation method to interpolate the reference function Rh
at fh during minimization of the objective function (6.46) for the reference im-
age. However, we need to use a smooth interpolation function for the motion
estimation, where we use a regularized spline interpolation with a bending en-
ergy regularizer with a smoothing parameter θ = 4× 10−2. Our choices for the
interpolation functions are based on numerical observations. If we do not use a
smooth interpolant, the minimizing sequence may get stuck in an undesirable
local minimum. We think that a regularized spline interpolation gives a smooth
representation of the non-convex objective function and avoids small oscillations
around a local minimum. We also follow a multilevel strategy to minimize the
non-convex objective function. We represent the objective function at three lev-
els and optimize them sequentially at each level. The solution at a coarse level
serves as an initial guess at a finer level. In this work, we are extensively using
built-in functions of the FAIR toolbox [Modersitzki09] unless stated otherwise.

We introduce a scaling factor in the objective function (6.40) and minimize the
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following problem, i.e.,

minimize
Rh,fh1 ,...,f

h
K

1

I0Te
D(Rh, fh1 , . . . , f

h
K) + S(Rh) + E(fh1 , . . . , f

h
K), (6.49)

to avoid the dependence of regularization parameters on the magnitude of I0Te
to a certain extent.

6.7.1 Performance of Sampling Schemes
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(a) PS scheme

1 6 12 18 24 30 36 42 48 54
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time

θ

(b) MAIS scheme

Figure 6.4: Distribution of projection views over time with the progres-
sive sampling (PS) scheme and the proposed interlaced sampling
scheme based on the family of metallic angles (MAIS).

In this experiment, we illustrate the effects of the sampling schemes on the
reconstructions of a deforming object, as shown in Fig. 6.5(a), with the motion-
compensated reconstruction model (6.49). The acquired projections either fol-
low the progressive sampling scheme (PS) or the proposed interlaced sampling
scheme based on the family of metallic angles (MAIS) as illustrated in Fig. 6.4
for our setup. We acquire in total 54 projections to reconstruct 9 frames as-
suming that the object is stationary while acquiring 6 consecutive projections
for one frame. The angular gap between two consecutive projections is 2π/6 for
the PS scheme and it is ψ5 for the MAIS scheme following (6.8). The projection
directions are the same for each frame in the PS scheme, whereas all the pro-
jection directions are unique in the MAIS scheme. For our experiment, we can
not use a bit-reversal based interlaced sampling scheme because it requires the
total number of frames to be a power of 2, whereas we need a sampling scheme
for 9 frames in total. We used the source intensity I0 = 107 photons/sec and
the detector exposure time Te = 1 sec. The optimization algorithm stops when
the relative change in the objective function value with respect to the previous
iterate is less than 10−6.
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Figure 6.5: Phantom and reconstructions based on the simulated datasets
with the PS and the MAIS schemes. The display range for im-
ages is 0 to 1.1 cm−1. The reconstructions with the TV-prior were
computed with γ = 5 × 10−4. The regularization parameter for
the hyperelastic regularizer is α = 1.
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Fig.6.5(a) shows the deformation of the object only at 5 instants of time out
of total 9 time points. The reconstructions without motion compensation (w/o
MC) are shown in Fig. 6.5(b). Here, we reconstruct each frame independently
with the AMAP reconstruction model derived in chapter 4. These reconstruc-
tions have limited angle artifacts due to reconstruction with a few number of
projections, i.e., only 6 projections which are acquired for a frame. On the other
hand, the reconstructions with the motion-compensated reconstruction (MC)
model (6.49), particularly with MAIS scheme, shows tremendous improvements
as shown in Fig.6.5(c). However, the MC reconstructions with the PS scheme
are distorted as shown in Fig.6.5(d). Intuitively, we can argue that the measured
projections following the MAIS scheme have more information about the defor-
mation of the object than the information collected with the PS scheme. To
gain more insight into this subject, we perform the singular value decomposition
(SVD) analysis of the MC reconstruction model in the next section.

Fig.6.5(e), (f), and (g) are reconstructions with a spatial TV regularization on
the reference image. Even with the TV regularizer that smooths uniform inten-
sity regions and preserve edges across regions, we do not see much improvement
for reconstructions with the PS scheme. For all the motion-compensated re-
constructions, we initialize the optimization algorithm with a reconstruction
computed for the time point t4 with the AMAP model, i.e., without a motion-
compensation approach. We also observe few line artifacts around the central
regions of the MC reconstructions with the MAIS sampling scheme; the real
reason behind these artifacts are not known to us.

6.7.2 SVD Analysis

In this study, we aim to analyze the impact of the sampling schemes on the
reconstructions with the MC reconstruction model. Moreover, we intend to rec-
ognize the limitation of the MC reconstruction model due to large deformations
with respect to the reference frame. We first derive a weighted least-squares MC
reconstruction model and define a MC linear system for study. We later analyze
the singular value decay of the system matrix associated with the defined MC
linear system.

If y is positive, a quadratic approximation of (6.30) can be obtained by means
of a second-order Taylor expansion, and this yields the following weighted least-
squares objective function

1

2

K∑
k=1

‖AhkTfhkR
h − bk‖2Σ−1

b

(6.50)
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where Ahk = [Ah11k, . . . , A
h
rpk] ∈ Rrp×n2

, bk = [b11k, . . . , brpk] ∈ Rrp×1 where
bijk = (log(I0Te)− log(yijk)), and Σb = diag(yk)−1.

The least-squares form (6.50) motivated us to study the SVD of the following
linear system, i.e., 

Ah1Tfh1
Ah2Tfh2

...
AhKTfhK

Rh =


b1
b2
...
bK

 . (6.51)

To simplify our investigations, we assume that the deformation field fh is known
with respect to the reference configuration and we represent the transformation
operator Tfh in a matrix form, denoted by T . In order to analyze the impact of
deformations on a MC reconstruction, we take four deformation configurations
with zero, small, moderate, and large displacements with respect to the reference
configuration as shown in Fig.6.6. Please note that T = Tz, T = Ts, T = Tm,
and T = Tl for zero, small, medium, and large displacements respectively. In
our example, the deformation maps, as shown in Fig.6.6(b), can be expressed
in a closed form, i.e.,

(ft)1 = x1 + αt exp
(
− x2

1

σx1

)
exp

(
− x2

2

σx2

)
,

(ft)2 = x2 (6.52)

where (x1, x2) are spatial points. The (αt)z = 0 is for zero displacement with re-
spect to the reference configuration, and the (αt)s = 0.16, (αt)m = 0.48, (αt)l =
0.64 are for small, moderate, and large displacements respectively.

Fig.6.7(a) shows singular values of the transformation matrix T at different
deformation configurations. The largest singular value of the matrix T , i.e.,

σmax(Tz) = 1, σmax(Ts) = 1.15,

σmax(Tm) = 1.82, σmax(Tl) = 2.96,

is increasing with increase in the average displacement length of a deformation
map. The matrix Tz, corresponding to zero displacement configuration, is an
identity matrix due to zero displacement with respect to the reference configu-
ration. Therefore all singular values of the matrix Tz is equal to 1. Notice that,
the rank deficiency of the matrix T is increasing with increase in the average
displacement length as shown in Fig. 6.7(a). The image features belong to the
null space of T disappear after the interpolation and a null space is becoming
larger with large deformations.
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(a) Reference
Configuration

(a) Small
Deformations

(b) Moderate
Deformations

(c) Large
Deformations

Figure 6.6: Dynamic Phantom and deformation maps with respect to the ref-
erence configuration. The deformation fields are defined in (6.52)
where σx1

= 0.3, σx2
= 0.15.

In order to see the impact of rank deficiency on the MC reconstruction due to
deformations, we analyze the MC linear system (6.51) where we consider that
the data is available only for two frames corresponding to different deformation
configurations. This reduces the linear system (6.51) to

ATR =

[
A1T1

A2T2

]
R =

[
b1
b2

]
(6.53)

where we have removed h from superscripts to simplify our notations and AT =
[A1T1, A2T2]T .

Given the fact that the rank deficiency of the matrix T increases with large
deformations, we would like to study how different deformation configurations
affects the null space of the system matrix AT . Suppose, T1 represents a small
deformation and T2 represents a large deformation. The dimension of the null
spaces then satisfy

dim N (T1) ≤ dim N (T2). (6.54)

In general, it is true that

N (T1) ⊆ N (A1T1), N (T2) ⊆ N (A2T2),

dim N (T1) ≤ dim N (A1T1), dim N (T2) ≤ dim N (A2T2). (6.55)

This implies that the total null space either remains same or grows after multi-
plying T1 and T2 with the system matrix A1 and A2, respectively, as illustrated
in Fig. 6.7(b).
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Figure 6.7: Singular values of T and AT = [A1T1, A2T2]T ∈ R2n×n where
n = 4096, T1 = Tm and T2 = Tl. T = Tz, T = Ts, T = Tm,
and T = Tl for zero, small, medium, and large displacements with
respect to the reference configuration, respectively.

The null space of the matrix AT satisfies

N (AT ) = N (A1T1) ∩N (A2T2), (6.56)
N (AT ) ⊆ N (A1T1), (6.57)
N (AT ) ⊆ N (A2T2). (6.58)

and

dim N (AT ) ≤ dim N (A1T1), and

dim N (AT ) ≤ dim N (A2T2). (6.59)

This signifies that the null space of AT is the intersection of the null spaces
of A1T1 and A2T2. For our test case, as shown in Fig.6.7(b), it seems that
the intersection of the null space of A1T1 and A2T2 only has a zero vector,
therefore the matrix AT has a full column rank, however, A1T1 and A2T2 are
rank deficient. These results are true for our test case; we still need to do
investigations for a very general case.

Now, we study the impact of the sampling schemes on the MC reconstructions
where A1 = A2 for the PS scheme and A1 6= A2 for the MAIS scheme. The
singular value decay for the matrix AT is displayed in Fig.6.8 with different
deformation configurations. The matrix AT has a full column rank with the
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Figure 6.8: Singular values of AT ∈ Rm×n wherem = 768, n = 4096, and T1 =
Tz corresponding to the reference configuration, but T2 varies with
different deformation configurations with respect to the reference
configuration. T2 = Tz for the zero displacements, T2 = Ts for the
small displacements, T2 = Tm for the moderate displacements, and
T2 = Tl for the large displacements. A1 = A2 for the PS scheme,
but A1 6= A2 for the MAIS scheme. The singular value decay
does not change much with different deformation configurations,
especially with the MAIS scheme, even though properties of the
matrix T varies with the deformation configuration.

MAIS scheme and has a trivial null space, however the matrix AT is a rank
deficient matrix with the PS scheme. Therefore, the number of features of a
given object do not appear on the sinogram with the PS scheme, and hence we
can not reconstruct the number of features of the object with the PS scheme.
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We stop our preliminary investigation at this point, but there are many questions
which need to be answered in the context of the sampling schemes and the MC
reconstruction model. We can study how the sampling schemes affect the motion
estimation assuming that the reference frame is known, benefits of the implicit
frame based motion modelling over the explicit frame-based motion modelling,
the effect of a trade-off between the exposure time and the number of projections
on the motion estimation and the image reconstructions, how the MC model
performs if stationarity assumption is invalid within a frame, and many more.

6.8 Conclusion

It has been shown that the distribution of projection views over time, partic-
ularly based on an interlaced sampling scheme, enhances the quality of images
reconstructed with a temporal regularized reconstruction model for dynamic
CT. In this work, we emphasize the importance of the interlacing scheme with
the MC reconstruction model. The MC reconstruction model exploit informa-
tion from the acquired projection data to estimate time-dependent changes of
a deforming object. We observed that the variability in the projection data
greatly influences the quality of a MC reconstruction.

Major interlacing schemes are not a fixed angular sampling scheme, and hence
not easy to implement in practice. Moreover, the existing interlaced FAS
schemes are not suitable to scan fast-moving objects. In this work, we propose
an interlaced FAS scheme based on the family of metallic angles. This scheme
guarantees an aperiodic pattern and it is suitable to scan fast-moving objects
due to small and adjustable angular gaps between consecutive projections. To
evaluate the performance of the proposed sampling scheme, we developed an
implicit reference based MC reconstruction model based on an assumption, i.e.,
so-called one-to-one correspondence almost everywhere. Our numerical scheme
guarantees that the deformation map and its inverse both have a one-to-one
correspondence almost everywhere. Our experimental results indicate that the
proposed interlacing scheme substantially enhances the quality of images recon-
structed with the MC reconstruction model based on the simulated datasets.

To gain insight into the MC reconstruction model, we perform an SVD analysis
of a related MC linear model where we assumed that the deformation map with
respect to the reference configuration is known. This also allows us to analyse
the impact of deformations on the MC reconstructions. We observed that the
rank deficiency of an interpolation/transformation matrix associated with the
deformations increases with increase in the average displacement length. This
indicates that few features of an image may not appear after interpolation.
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Our SVD analysis also indicates that the system matrix associated with the PS
scheme is highly rank deficient, therefore a lot of image features do not appear on
the sinogram. As a result, the MC reconstructions are generally of a poor quality
with the PS scheme. Our investigations are mainly on a preliminary stage and
need more attention. However, they point to some interesting questions to be
answered for a more general case.
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Chapter 7

Conclusion and Future Work

This thesis aims to understand and investigate different factors that can in-
fluence the quality of dynamic CT reconstructions. Mainly, we studied three
fundamental issues associated with dynamic CT, i.e., the uncertainties due to
flat-field measurements, the distribution of projection views over time, and the
non-corresponding motion models. In this chapter, we summarize our key find-
ings in a broader context, point out limitations of our proposed models and
methods, and comment on various topics that warrant further studies.

The first study points out that the flat-field uncertainties may cause severe and
systematic artifacts, known as ring artifacts, in time-limited X-ray tomography
such as dynamic CT. Our analysis shows an inverse relationship between severity
of the ring artifacts and the flat-field intensity. The existing correction methods,
roughly speaking, are based on the geometric nature of ring artifacts observed
in either the sinogram or the reconstruction, however, our approach takes into
account the statistical properties of the flat-fields. The proposed reconstruction
model jointly estimates the flat-field intensity and the attenuation function of
the object. The maximum likelihood estimate of the flat-field intensity through
our model depends not only on the measurements without the object but also
on the measurements with the object which also contain information about the
flat-field intensity. As a result, the flat-field intensity estimate improves which
leads to reduction in the ring artifacts. Our experimental results indicate that
the model effectively mitigates ring artifacts even for low SNR data, not only
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with simulated data, but also with real data sets.

We have also shown that the proposed JMAP model and its quadratic approxi-
mation model, i.e., a stripe-weighted least-squares (SWLS) model, perform sim-
ilar with regards to noise and reconstruction quality. The SWLS model paves
the way to utilize iterative optimization algorithms such as block row-action
methods which have fast initial convergence towards the desired reconstruction.
We have also proposed a “ring ratio” error measure which quantifies the flat-
field error in the image domain and assess the reduction of ring artifacts in the
reconstructions. The error measure is motivated by the first-order analysis of
a log-normalized sinogram as shown in section (4.1.3). Therefore, we point out
that this measure is not specific to our test cases, rather it can be used in general
to evaluate the performance of other ring artifact correction algorithm.

The proposed JMAP model assumes that the object is stationary during the
data acquisition. We can derive a motion-compensated (MC) reconstruction
model with uncertain flat-fields utilizing the proposed methodology. We think
that the motion estimation may be very sensitive to the ring artifacts, in part,
because of the failure of the underlying assumption upon which the motion
model is based, i.e., the so-called one-to-one correspondence almost everywhere.
Therefore, we believe that a motion-compensated (MC) reconstruction model
which takes into account the cause of these ring artifacts may enhance the
quality of reconstructions for dynamic CT. We also mention that the proposed
methodology can readily be extended to estimate a time-varying flat-field, e.g.,
in applications where the flat-field does not remain stable while acquiring the
tomographic measurements.

The second study demonstrates that the non-corresponding motion model based
on the underlying physics of crack formation regularizes non-smooth and large
deformations along cracks with minimal influence on the nearby regions. We
derive the motion model based on two fundamental principles of crack formation.
First, a material lose its stiffness entirely at the location of a crack, and second,
the material dissipates energy proportional to the crack surface. We formulate
the dissipation energy in terms of a soft crack indicator function and derive
a registration model based on the minimum total potential energy principle.
The resulting registration model jointly estimates the crack indicator function
and the deformation map. The crack indicator function allows to modulate the
stiffness of a material, and as a result, regularize the non-smooth and the large
deformations along the crack region. Moreover, it masks the crack region such
that the registration in the non-crack regions executes independently. Therefore,
crack regions have a minimum influence on the deformations in the non-crack
region.

We should note that the proposed image registration framework does not depend
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on a specific data-fidelity measure or a regularization energy for the deforma-
tion map. We have also shown the effectiveness of this framework with two
data-fidelity measures suitable for intensity- and mass-preserving applications.
Therefore, it is worth to investigate the efficacy of this framework with other
data-fidelity measures and regularization energies, especially with Normalized
Gradient Fields (NGF) - the image gradient based data-fidelity measure. NGF
could be a suitable measure to track the motion of a deforming object based on
the edge information of an object. Although our investigations were motivated
to develop motion models for dynamic CT, we realized that the proposed model
has applicability in the medical image registration applications as well, e.g.,
registration of histological images where cracks may develop during staining of
tissues.

The numerical scheme for our proposed non-convex registration model is based
on a multi-level strategy, where the optimal point at a coarse discretization
serves as an initial guess at a finer discretization. We expect that the opti-
mal point at a coarse discretization is close to a desired local minimum. This
scheme fails for high-resolution images where a crack that is a few-pixel wide
completely disappears at a coarse discretization. Thus, the optimal point at
a coarse discretization may not be close to a desired local minimum. There-
fore, more work needs to be done to develop a proper numerical scheme for
our model. In the future, we intend to do the well-posedness analysis for the
proposed model to gain the theoretical insight. After thorough numerical and
theoretical studies, another important step could be to incorporate the motion
model into a motion-compensation framework. It is also worth investigating
the effect of regularization energies that favor discontinuous and non-smooth
deformation fields, e.g., a total-variation-based regularization energy, combined
with our proposed framework.

The third study concludes that an interlaced distribution of projection views
over time enhances the spatio-temporal resolution of motion-compensated re-
constructions. Major interlacing schemes are not fixed angular gap sampling
(FAS) schemes, and hence they are not easy to implement in practice. More-
over, the existing interlaced FAS schemes are not suitable to scan fast-moving
objects. The proposed interlaced FAS scheme based on the family of metallic
angles guarantees an aperiodic projection pattern. It is also suitable to scan
fast-moving objects due to small, adjustable angular gaps between consecutive
projections. We observed that the variability in the projection data, due to the
interlaced projections, greatly influences the quality of a MC reconstruction.

A numerical scheme for the MC reconstruction model should ensure global in-
vertibility of a deformation map to satisfy the underlying model assumption,
i.e., a so-called one-to-one correspondence almost everywhere. However, very
few studies have given attention to the crucial requirement of the global in-
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vertibility in the context of MC reconstructions. Therefore, we re-emphasize
the need for a proper numerical scheme. Our numerical scheme guarantees
the global invertibility by incorporating a Dirichlet boundary condition for the
deformation as well as ensures a positive Jacobian determinant of the deforma-
tion map almost everywhere. We incorporate the Dirichlet boundary condition
by modifying a large sparse Hessian matrix, but it is not an efficient numeri-
cal approach. Moreover, the Hessian matrix construction is a computationally
intensive task. Therefore, we think that the use of an accelerated first-order
iterative method for the non-convex problem with a linear constraint to incor-
porate Dirichlet boundary condition could be an approach to reduce memory
footprint and overall computation time.

In our preliminary investigations, with the help of an SVD analysis, we observed
that for our test cases, the rank deficiency of the interpolation/transformation
matrix increases with increasing average displacement length in respect to the
reference configuration. This means, some features of the image may disappear
after interpolation. Presently, we do not know whether this finding is valid or
not for a more general case; moreover, we need to analyze the effects of rank
deficiency on the MC reconstructions. The SVD analysis also indicates that the
system matrix associated with the progressive sampling scheme is highly rank
deficient. Therefore, a lot of image features do not appear on the sinogram, and
as a result, we obtain poor quality MC reconstructions. We also observed a few
artifacts in our MC reconstructions; however, we do not know the real reasons
behind these artifacts. We believe that a thorough investigation of the cause
of these artifacts may bring forth new models to mitigate these reconstruction
artifacts.
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