1,306 research outputs found
ab initio Electronic Transport Model with Explicit Solution to the Linearized Boltzmann Transport Equation
Accurate models of carrier transport are essential for describing the
electronic properties of semiconductor materials. To the best of our knowledge,
the current models following the framework of the Boltzmann transport equation
(BTE) either rely heavily on experimental data (i.e., semi-empirical), or
utilize simplifying assumptions, such as the constant relaxation time
approximation (BTE-cRTA). While these models offer valuable physical insights
and accurate calculations of transport properties in some cases, they often
lack sufficient accuracy -- particularly in capturing the correct trends with
temperature and carrier concentration. We present here a general transport
model for calculating low-field electrical drift mobility and Seebeck
coefficient of n-type semiconductors, by explicitly considering all relevant
physical phenomena (i.e. elastic and inelastic scattering mechanisms). We first
rewrite expressions for the rates of elastic scattering mechanisms, in terms of
ab initio properties, such as the band structure, density of states, and polar
optical phonon frequency. We then solve the linear BTE to obtain the
perturbation to the electron distribution -- resulting from the dominant
scattering mechanisms -- and use this to calculate the overall mobility and
Seebeck coefficient. Using our model, we accurately calculate electrical
transport properties of the compound n-type semiconductors, GaAs and InN, over
various ranges of temperature and carrier concentration. Our fully predictive
model provides high accuracy when compared to experimental measurements on both
GaAs and InN, and vastly outperforms both semi-empirical models and the
BTE-cRTA. Therefore, we assert that this approach represents a first step
towards a fully ab initio carrier transport model that is valid in all compound
semiconductors
The efficacy of low vision devices for students in specialized schools for students who are blind in Kathmandu Valley, Nepal
In Nepal, children with low vision attend specialized schools for students who are totally blind and are treated as if they were totally blind. This study identified children with low vision and provided low vision devices to them. Of the 22% of the students in the school who had low vision, 78.5% benefited from the devices. Proper devices and counseling improved the quality of life of a significant number of these students. ©2008 AFB, All Rights Reserved
Coherence of Spin Qubits in Silicon
Given the effectiveness of semiconductor devices for classical computation
one is naturally led to consider semiconductor systems for solid state quantum
information processing. Semiconductors are particularly suitable where local
control of electric fields and charge transport are required. Conventional
semiconductor electronics is built upon these capabilities and has demonstrated
scaling to large complicated arrays of interconnected devices. However, the
requirements for a quantum computer are very different from those for classical
computation, and it is not immediately obvious how best to build one in a
semiconductor. One possible approach is to use spins as qubits: of nuclei, of
electrons, or both in combination. Long qubit coherence times are a
prerequisite for quantum computing, and in this paper we will discuss
measurements of spin coherence in silicon. The results are encouraging - both
electrons bound to donors and the donor nuclei exhibit low decoherence under
the right circumstances. Doped silicon thus appears to pass the first test on
the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200
Good-bye, Wild Women, Good-bye!
https://digitalcommons.library.umaine.edu/mmb-vp/3127/thumbnail.jp
Effect of Native Defects on Optical Properties of InxGa1-xN Alloys
The energy position of the optical absorption edge and the free carrier
populations in InxGa1-xN ternary alloys can be controlled using high energy
4He+ irradiation. The blue shift of the absorption edge after irradiation in
In-rich material (x > 0.34) is attributed to the band-filling effect
(Burstein-Moss shift) due to the native donors introduced by the irradiation.
In Ga-rich material, optical absorption measurements show that the
irradiation-introduced native defects are inside the bandgap, where they are
incorporated as acceptors. The observed irradiation-produced changes in the
optical absorption edge and the carrier populations in InxGa1-xN are in
excellent agreement with the predictions of the amphoteric defect model
Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins
Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f
is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed
electron spin resonance technique, thereby the effect of environmental 29^Si
nuclear spins on the donor electron spin is systematically studied. The
linewidth as a function of f shows a good agreement with theoretical analysis.
We also report the phase memory time T_M of the donor electron spin dependent
on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure
TransitionâMetalâFree CrossâCoupling of Benzothiophenes and Styrenes in a Stereoselective Synthesis of Substituted (E,Z)â1,3âDienes
A transition metalâfree oneâpot stereoselective approach to substituted (E,Z)â1,3âdienes was developed by using an interrupted Pummerer reaction/ligandâcoupling strategy. Readily available benzothiophene Sâoxides, which can be conveniently prepared by oxidation of the parent benzothiophenes, undergo Pummerer coupling with styrenes. Reaction of the resultant sulfonium salts with alkyllithium/magnesium reagents generates underexploited hypervalent sulfurane intermediates that undergo selective ligand coupling, resulting in dismantling of the benzothiophene motif and the formation of decorated (E,Z)â1,3âdienes
- âŠ