53 research outputs found

    Flat control of industrial robotic manipulators

    Get PDF
    Published ArticleA new approach to tracking control of industrial robot manipulators is presented in this paper. The highly coupled nonlinear dynamics of a six degrees of freedom (6-DOF) serial robot is decoupled by expressing its variables as a function of a flat output and a finite number of its derivatives. Hence the derivation of the flat output for the 6-DOF robot is presented. With the flat output, trajectories for each of the generalized coordinates are easily designed and open loop control is made possible. Using MATLAB/Simulink Sfunctions combined with the differential flatness property of the robot, trajectory tracking is carried out in closed loop by using a linear flat controller. The merit of this approach reduces the computational complexity of the robot dynamics by allowing online computation of a high order system at a lower computational cost. Using the same processor, the run time for tracking arbitrary trajectories is reduced significantly to about 10 s as compared to 30 min in the original study (Hoifodt, 2011). The design is taken further by including a Jacobian transformation for tracking of trajectories in cartesian space. Simulations using the ABB IRB140 industrial robot with full dynamics are used to validate the study

    Statistical analysis of wind speed and wind power potential of Port Elizabeth using Weibull parameters

    Get PDF
    This paper analyses wind speed characteristics and wind power potential of Port Elizabeth using statistical Weibull parameters. A measured 5–minute time series average wind speed over a period of 5 years (2005 - 2009) was obtained from the South African Weather Service (SAWS). The results show that the shape parameter (k) ranges from 1.319 in April 2006 to 2.107 in November 2009, while the scale parameter (c) varies from 3.983m/s in May 2008 to 7.390 in November 2009.The average wind power density is highest during Spring (September–October), 256.505W/m2 and lowest during Autumn (April-May), 152.381W/m2. This paper is relevant to a decision-making process on significant investment in a wind power project

    Statistical analysis of wind speed and wind power potential of Port Elizabeth using Weibull parameters

    Get PDF
    This paper analyses wind speed characteristics and wind power potential of Port Elizabeth using statistical Weibull parameters. A measured 5–minute time series average wind speed over a period of 5 years (2005 - 2009) was obtained from the South African Weather Service (SAWS). The results show that the shape parameter (k) ranges from 1.319 in April 2006 to 2.107 in November 2009, while the scale parameter (c) varies from 3.983m/s in May 2008 to 7.390 in November 2009.The average wind power density is highest during Spring (September–October), 256.505W/m2 and lowest during Autumn (April-May), 152.381W/m2. This paper is relevant to a decision-making process on significant investment in a wind power project

    A numerical investigation of wind speed effects on lake-effect storms

    Full text link
    Observations of lake-effect storms that occur over the Great Lakes region during late autumn and winter indicate a high sensitivity to ambient wind speed and direction. In this paper, a two-dimensional version of the Penn State University/National Center for Atmospheric Research (PSU/NCAR) model is used to investigate the wind speed effects on lake-effect snowstorms that occur over the Great Lakes region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42510/1/10546_2004_Article_BF00708966.pd

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Association of whole-genome and NETRIN1 signaling pathway-derived polygenic risk scores for Major Depressive Disorder and white matter microstructure in UK Biobank

    Get PDF
    Background: Major depressive disorder is a clinically heterogeneous psychiatric disorder with a polygenic architecture. Genome-wide association studies have identified a number of risk-associated variants across the genome and have reported growing evidence of NETRIN1 pathway involvement. Stratifying disease risk by genetic variation within the NETRIN1 pathway may provide important routes for identification of disease mechanisms by focusing on a specific process, excluding heterogeneous risk-associated variation in other pathways. Here, we sought to investigate whether major depressive disorder polygenic risk scores derived from the NETRIN1 signaling pathway (NETRIN1-PRSs) and the whole genome, excluding NETRIN1 pathway genes (genomic-PRSs), were associated with white matter microstructure. Methods: We used two diffusion tensor imaging measures, fractional anisotropy (FA) and mean diffusivity (MD), in the most up-to-date UK Biobank neuroimaging data release (FA: n = 6401; MD: n = 6390). Results: We found significantly lower FA in the superior longitudinal fasciculus (β = −.035, p =.029) and significantly higher MD in a global measure of thalamic radiations (β =.029, p =.021), as well as higher MD in the superior (β =.034, p =.039) and inferior (β =.029, p =.043) longitudinal fasciculus and in the anterior (β =.025, p =.046) and superior (β =.027, p =.043) thalamic radiation associated with NETRIN1-PRS. Genomic-PRS was also associated with lower FA and higher MD in several tracts. Conclusions: Our findings indicate that variation in the NETRIN1 signaling pathway may confer risk for major depressive disorder through effects on a number of white matter tracts
    • …
    corecore