11 research outputs found

    NEW APPROACHES FOR ESTIMATING HEMISPHERIC LATERALIZATION FROM RESTING STATE FMRI DATA WITH RELATIONSHIP TO AGE, GENDER AND MENTAL DISORDERS

    Get PDF
    Lateralization is specialization of the brain hemispheres in certain tasks, such as language, mathematics, cognition and motor skills. It is one of the most queried topics related to the human brain. After the invention of modern medical imaging techniques including functional magnetic resonance imaging (fMRI), scientific research about the human brain, including lateralization, gained huge momentum. There have been a remarkable numbers of studies about lateralization and most of these studies focused on investigating which part of the brain dominates in which tasks. However, there have been very few lateralization studies on brain intrinsic activity, i.e., resting state activity where subjects are asked to stay awake while resting without performing any specific tasks. Independent component analysis (ICA), a data-driven blind source separation method, has become one of the conventional data analysis tools for brain imaging data. ICA can separate the brain imaging data into functional regions that are temporally coherent, and functional network connectivity (FNC) of these regions can be computed. FNC is a measure that captures the temporal covariance of the brain networks. In this dissertation, we focus on the lateralization during the resting state and assess hemispheric differences during the resting state. The lateralization of the resting state networks and their association with age and gender is presented using a large resting state fMRI dataset. A novel approach for generating hemisphere specific time-courses and computing FNC inside the hemispheres and between hemispheres is proposed and the relationship of these FNC values with age, gender and mental illness, schizophrenia is reported. Finally, a new framework to estimate power spectral density of 4D brain imaging data and a dimension reduction method to reduce dimensionality from 4D frequency domain to 2D frequency domain has been proposed. This framework helps us to reveal spatiotemporal organization differences between hemispheres. In summary, our work has made several contributions to advance lateralization analysis and has improved our understanding of various aspects of hemispheric differences during the resting stat

    Exploring the longitudinal associations of functional network connectivity and psychiatric symptom changes in youth

    Get PDF
    Background: Functional connectivity has been associated with psychiatric problems, both in children and adults, but inconsistencies are present across studies. Prior research has mostly focused on small clinical samples with cross-sectional designs. Methods: We adopted a longitudinal design with repeated assessments to investigate associations between functional network connectivity (FNC) and psychiatric problems in youth (9- to 17-year-olds, two time points) from the general population. The largest single-site study of pediatric neurodevelopment was used: Generation R (N = 3,131 with data at either time point). Psychiatric symptoms were measured with the Child Behavioral Checklist as broadband internalizing and externalizing problems, and its eight specific syndrome scales (e.g., anxious-depressed). FNC was assessed with two complementary approaches. First, static FNC (sFNC) was measured with graph theory-based metrics. Second, dynamic FNC (dFNC), where connectivity is allowed to vary over time, was summarized into 5 states that participants spent time in. Cross-lagged panel models were used to investigate the longitudinal bidirectional relationships of sFNC with internalizing and externalizing problems. Similar cross-lagged panel models were run for dFNC. Results: Small longitudinal relationships between dFNC and certain syndrome scales were observed, especially for baseline syndrome scales (i.e., rule-breaking, somatic complaints, thought problems, and attention problems) predicting connectivity changes. However, no association between any of the psychiatric problems (broadband and syndrome scales) with either measure of FNC survived correction for multiple testing. Conclusion: We found no or very modest evidence for longitudinal associations between psychiatric problems with dynamic and static FNC in this population-based sample. Differences in findings may stem from the population drawn, study design, developmental timing, and sample sizes.</p

    A method for capturing dynamic spectral coupling in resting fMRI reveals domain-specific patterns in schizophrenia

    Get PDF
    IntroductionResting-state functional magnetic resonance imaging (rs-fMRI) is a powerful tool for assessing functional brain connectivity. Recent studies have focused on shorter-term connectivity and dynamics in the resting state. However, most of the prior work evaluates changes in time-series correlations. In this study, we propose a framework that focuses on time-resolved spectral coupling (assessed via the correlation between power spectra of the windowed time courses) among different brain circuits determined via independent component analysis (ICA).MethodsMotivated by earlier work suggesting significant spectral differences in people with schizophrenia, we developed an approach to evaluate time-resolved spectral coupling (trSC). To do this, we first calculated the correlation between the power spectra of windowed time-courses pairs of brain components. Then, we subgrouped each correlation map into four subgroups based on the connectivity strength utilizing quartiles and clustering techniques. Lastly, we examined clinical group differences by regression analysis for each averaged count and average cluster size matrices in each quartile. We evaluated the method by applying it to resting-state data collected from 151 (114 males, 37 females) people with schizophrenia (SZ) and 163 (117 males, 46 females) healthy controls (HC).ResultsOur proposed approach enables us to observe the change of connectivity strength within each quartile for different subgroups. People with schizophrenia showed highly modularized and significant differences in multiple network domains, whereas males and females showed less modular differences. Both cell count and average cluster size analysis for subgroups indicate a higher connectivity rate in the fourth quartile for the visual network in the control group. This indicates increased trSC in visual networks in the controls. In other words, this shows that the visual networks in people with schizophrenia have less mutually consistent spectra. It is also the case that the visual networks are less spectrally correlated on short timescales with networks of all other functional domains.ConclusionsThe results of this study reveal significant differences in the degree to which spectral power profiles are coupled over time. Importantly, there are significant but distinct differences both between males and females and between people with schizophrenia and controls. We observed a more significant coupling rate in the visual network for the healthy controls and males in the upper quartile. Fluctuations over time are complex, and focusing on only time-resolved coupling among time-courses is likely to miss important information. Also, people with schizophrenia are known to have impairments in visual processing but the underlying reasons for the impairment are still unknown. Therefore, the trSC approach can be a useful tool to explore the reasons for the impairments

    Developmental Changes in Dynamic Functional Connectivity From Childhood Into Adolescence

    Get PDF
    The longitudinal study of typical neurodevelopment is key for understanding deviations due to specific factors, such as psychopathology. However, research utilizing repeated measurements remains scarce. Resting-state functional magnetic resonance imaging (MRI) studies have traditionally examined connectivity as ‘static’ during the measurement period. In contrast, dynamic approaches offer a more comprehensive representation of functional connectivity by allowing for different connectivity configurations (time varying connectivity) throughout the scanning session. Our objective was to characterize the longitudinal developmental changes in dynamic functional connectivity in a population-based pediatric sample. Resting-state MRI data were acquired at the ages of 10 (range 8-to-12, n = 3,327) and 14 (range 13-to-15, n = 2,404) years old using a single, study-dedicated 3 Tesla scanner. A fully-automated spatially constrained group-independent component analysis (ICA) was applied to decompose multi-subject resting-state data into functionally homogeneous regions. Dynamic functional network connectivity (FNC) between all ICA time courses were computed using a tapered sliding window approach. We used a k-means algorithm to cluster the resulting dynamic FNC windows from each scan session into five dynamic states. We examined age and sex associations using linear mixed-effects models. First, independent from the dynamic states, we found a general increase in the temporal variability of the connections between intrinsic connectivity networks with increasing age. Second, when examining the clusters of dynamic FNC windows, we observed that the time spent in less modularized states, with low intra- and inter-network connectivity, decreased with age. Third, the number of transitions between states also decreased with age. Finally, compared to boys, girls showed a more mature pattern of dynamic brain connectivity, indicated by more time spent in a highly modularized state, less time spent in specific states that are frequently observed at a younger age, and a lower number of transitions between states. This longitudinal population-based study demonstrates age-related maturation in dynamic intrinsic neural activity from childhood into adolescence and offers a meaningful baseline for comparison with deviations from typical development. Given that several behavioral and cognitive processes also show marked changes through childhood and adolescence, dynamic functional connectivity should also be explored as a potential neurobiological determinant of such changes

    Multidimensional Frequency Domain Analysis of Full-Volume fMRI Reveals Significant Effects of Age, Gender, and Mental Illness on the Spatiotemporal Organization of Resting-State Brain Activity

    Get PDF
    Clinical research employing functional magnetic resonance imaging (fMRI) is often conducted within the connectionist paradigm, focusing on patterns of connectivity between voxels, regions of interest (ROIs) or spatially distributed functional networks. Connectivity-based analyses are concerned with pairwise correlations of the temporal activation associated with restrictions of the whole-brain hemodynamic signal to locations of a priori interest. There is a more abstract question however that such spatially granular correlation-based approaches do not elucidate: Are the broad spatiotemporal organizing principles of brains in certain populations distinguishable from those of others? Global patterns (in space and time) of hemodynamic activation are rarely scrutinized for features that might characterize complex psychiatric conditions, aging effects or gender—among other variables of potential interest to researchers. We introduce a canonical, transparent technique for characterizing the role in overall brain activation of spatially scaled periodic patterns with given temporal recurrence rates. A core feature of our technique is the spatiotemporal spectral profile (STSP), a readily interpretable 2D reduction of the native four-dimensional brain × time frequency domain that is still “big enough” to capture important group differences in globally patterned brain activation. Its power to distinguish populations of interest is demonstrated on a large balanced multi-site resting fMRI dataset with nearly equal numbers of schizophrenia patients and healthy controls. Our analysis reveals striking differences in the spatiotemporal organization of brain activity that correlate with the presence of diagnosed schizophrenia, as well as with gender and age. To the best of our knowledge, this is the first demonstration that a 4D frequency domain analysis of full volume fMRI data exposes clinically or demographically relevant differences in resting-state brain function
    corecore