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A B S T R A C T   

Background: Functional connectivity has been associated with psychiatric problems, both in children and adults, 
but inconsistencies are present across studies. Prior research has mostly focused on small clinical samples with 
cross-sectional designs. 
Methods: We adopted a longitudinal design with repeated assessments to investigate associations between 
functional network connectivity (FNC) and psychiatric problems in youth (9- to 17-year-olds, two time points) 
from the general population. The largest single-site study of pediatric neurodevelopment was used: Generation R 
(N = 3,131 with data at either time point). Psychiatric symptoms were measured with the Child Behavioral 
Checklist as broadband internalizing and externalizing problems, and its eight specific syndrome scales (e.g., 
anxious-depressed). FNC was assessed with two complementary approaches. First, static FNC (sFNC) was 
measured with graph theory-based metrics. Second, dynamic FNC (dFNC), where connectivity is allowed to vary 
over time, was summarized into 5 states that participants spent time in. Cross-lagged panel models were used to 
investigate the longitudinal bidirectional relationships of sFNC with internalizing and externalizing problems. 
Similar cross-lagged panel models were run for dFNC. 
Results: Small longitudinal relationships between dFNC and certain syndrome scales were observed, especially for 
baseline syndrome scales (i.e., rule-breaking, somatic complaints, thought problems, and attention problems) 
predicting connectivity changes. However, no association between any of the psychiatric problems (broadband 
and syndrome scales) with either measure of FNC survived correction for multiple testing. 
Conclusion: We found no or very modest evidence for longitudinal associations between psychiatric problems 
with dynamic and static FNC in this population-based sample. Differences in findings may stem from the pop
ulation drawn, study design, developmental timing, and sample sizes.   

1. Introduction 

Psychiatric problems tend to arise in early life (Solmi et al., 2022), 
with childhood and adolescence being considered key developmental 
windows in which substantial changes in behavioral issues emerge 
(Galván, 2017). Neurobiological differences are among the proposed 
mechanisms that determine psychiatric problem occurrence. The 

neurodevelopmental changes taking place in youth have made neuro
biology a prime candidate for investigations into psychiatric disorders’ 
etiology (Vijayakumar et al., 2018). Specifically, a large body of litera
ture has shown, albeit inconsistently, relationships between psychiatric 
problems and brain functional connectivity (FC) and its network analog, 
functional network connectivity (FNC), in childhood and adolescence 
(Canario et al., 2021). 
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FNC refers to the temporal correlation among functional commu
nities in the brain, also called resting-state networks (van den Heuvel 
and Sporns, 2013). Brain FNC can be assessed with resting-state func
tional magnetic resonance imaging (rs-fMRI). This sequence can be used 
to quantify correlated spontaneous low-frequency fluctuations in the 
BOLD signal across brain networks (Biswal et al., 1995). FNC can be 
measured both in a static and dynamic manner. Static FNC (sFNC) al
lows the capturing of connectivity patterns across the brain (e.g., 
average connectivity in a given network) across the scanning proced
ures. Dynamic FNC (dFNC) extends this by examining the dynamicity of 
brain networks, meaning that it allows for correlational patterns across 
regions to vary throughout the imaging assessment (Allen et al., 2014). 
This allows the identification of brain connectivity states, or configu
rations, the brain has during the scanning session. Importantly, FNC has 
high reproducibility among individuals and reliably captures facets of 
functional brain development (Allen et al., 2011; López-Vicente et al., 
2021). However, studies leveraging either rs-fMRI approach to better 
understand psychopathology face numerous challenges, including poor 
replicability of clinical findings (Onitsuka et al., 2022). 

Prior literature investigated FNC patterns, at both static and dynamic 
levels, in several psychiatric disorders. Differences in FNC between cases 
and controls have been identified, although in different areas or for 
different properties, meaning that findings remain inconsistent or 
difficult to compare (Oldehinkel et al., 2013). For sFNC, several clinical 
studies found disrupted network properties for major depressive disor
der (Wise et al., 2017), autism spectrum disorder (Sha et al., 2022), and 
attention-deficit/hyperactivity disorder (Saad et al., 2017). Results 
suggest differences in the efficiency of the sharing of information across 
networks, at the global or local levels (global and local efficiency). For 
dFNC, differential patterns were present for major depression (Wise 
et al., 2017; Wu et al., 2019; Zhi et al., 2018), schizophrenia (Damaraju 
et al., 2014; Ma et al., 2014; Sendi et al., 2021), and neuro
developmental disorders (de Lacy and Calhoun, 2018). Patients 
suffering from mental illness generally spent more time in states char
acterized by inefficient connectivity or global dysconnectivity. More
over, some studies found that psychiatric patients spent more time in 
states related to self-focused thinking, less in states for positive emo
tions, and had higher fluctuations across states (Ma et al., 2014; Wise 
et al., 2017; Wu et al., 2019). 

While this body of literature suggests that brain FNC may further our 
understanding of psychiatric problems, interpretation is often hampered 
by cross-sectional study designs. Longitudinal approaches are key to 
shedding further light on the relationships between FNC and behavioral 
problems and can inform the temporal directionality of associations if 
repeated measurements are available. Further, prior literature has 
accounted for a few selected confounders (e.g., age, sex), but additional 
factors may be at play in associations between brain functioning and 
psychiatric issues (e.g., socioeconomic status) (Dall’Aglio, Kim, et al., 
2022). Additionally, previous studies mostly used diagnostic data in 
clinical samples. However, psychiatric problems likely exist on a con
tinuum (Garvey et al., 2016), highlighting the need for exploring the full 
extent of psychiatric symptoms and using population-based samples. 
Such explorations may be particularly beneficial in key developmental 
periods like adolescence, during which several psychiatric problems 
onset or exacerbate and substantial neurodevelopmental changes occur 
(Solmi et al., 2022; Vijayakumar et al., 2018). Lastly, examinations of 
FNC in relation to psychiatric problems in youth have been mostly 
limited to static approaches (Canario et al., 2021; López-Vicente et al., 
2021). Adopting dynamic approaches to study FNC may provide novel 
information regarding the connectivity pattern changes occurring with 
psychiatric problems. 

Here, we explored the longitudinal relationships between brain 
connectivity and psychiatric symptoms, as measured by static and dy
namic FNC approaches, in a large (N = 3,131), single-site, population- 
based sample of adolescents, leveraging repeated rs-fMRI and behav
ioral assessments. 

2. Methods 

2.1. Participants 

This longitudinal work was embedded within the Generation R 
Study, a prospective birth cohort from fetal life up until adolescence 
(Kooijman et al., 2016), which is conducted in Rotterdam, the 
Netherlands (one study site). Ethical approval was obtained from the 
Medical Ethics Committee of Erasmus MC, University Medical Center 
Rotterdam. All parents provided written informed consent and children 
provided assent (younger than 12 years) or consent (12 years or older). 

Of the Generation R Study cohort (N = 9,901), we used data from 
children with assessments at ages 10- or 14-years (age range: 9- to 17- 
year-olds). Children with data on psychiatric problems (internalizing 
or externalizing) and functional connectivity at one assessment were 
included. Of note, due to attrition and financial constraints, not all 
children could be offered MRI scans. In total, 3,767 children were 
imaged at either assessment, with 1,037 presenting data for both as
sessments. After applying the exclusion criteria, consisting of clinically 
relevant incidental findings, and poor image quality (see Image quality 
control), we obtained a sample of 3,296 children. For each sibling or twin 
in the sample, one was randomly included to prevent clustering. We 
obtained a final sample of 3,131 children from the general population 
with connectivity and psychiatric data. 

2.2. Measures 

2.2.1. Image acquisition 
Images were obtained on a study-dedicated 3T scan (GE Discovery 

MR750w MRI System, General Electric, Milwaukee, WI, United States) 
with an eight-channel head coil. Rs-fMRI data were collected with an 
interleaved gradient recalled axial-echo planar imaging sequence (TR =

1,760 ms, TE = 30 ms, flip angle = 85◦, matrix = 64 × 64, FOV = 230 
mm × 230 mm, slice thickness = 4 mm) for a total of 5 min. 52 s. per 
child (White et al., 2018). Participants were instructed to keep their eyes 
closed and stay awake. 

2.2.2. Image pre-processing 
Pre-processing of the images was performed with the FMRIPrep 

pipeline (v. 20.1.1 singularity container) (Esteban et al., 2019). FMRI
Prep involves (i) volume realignment for motion from rotation and 
translation, (ii) slice-timing correction, and (iii) inter-subject registra
tion. Spatial normalization (ICBM 152 non-linear asymmetrical tem
plate v. 2009c) (Fonov et al., 2009) was conducted with non-linear 
registration (antsRegistration tool, ANTs v2.1.0) (Avants et al., 2008). 
Functional data were resampled to 3 mm × 3 mm × 3 mm isotropic 
voxels. Volume realignment provided us with the time series for calcu
lating the first temporal derivatives of the six base motion parameters 
(three rotations, three translations) as well as quadratic terms (six for 
the base parameters and six for the temporal derivatives). We obtained a 
total of 24 head motion parameters, which were used as confound re
gressors before connectivity analysis (Satterthwaite et al., 2013). 

2.2.3. Image quality control 
We first excluded scans with high motion, based on a mean 

framewise displacement higher than 0.25 mm or more than 20% of the 
volumes with a framewise displacement higher than 0.2 mm (Parkes 
et al., 2018). Second, visual inspections were performed for image co- 
registration, major artifacts, and whole-brain coverage. Problematic 
images, based on these criteria, were excluded (López-Vicente et al., 
2021). In a sensitivity analysis, more stringent quality control was 
applied, where a mean framewise displacement ≤ 0.11 mm cutoff was 
used for exclusion (see Sensitivity analyses). 

2.2.4. Static functional network connectivity 
We summarized static FNC characteristics using a graph theory- 
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based approach representing the topological architecture of brain net
works. Graph theory provides information on functional networks 
across the whole brain and on how networks may relate to each other. 
This is in line with the evidence that FC is organized into several com
plex networks used to integrate and segregate information (Fornito 
et al., 2016). Fifty-one reference components from the Dev-CoG devel
opmental imaging study were used to parcellate the functional scans 
(Agcaoglu et al., 2019, 2020). The 51x51 correlation matrices were 
generated by calculating Pearson correlations between the time series 
and were Fisher r-to-z transformed to obtain normal distributions. The 
brain connectivity toolbox was then used (python version) (La Plante, 
2022; Rubinov and Sporns, 2010). Matrix diagonals were excluded and 
the lower half of the matrix was extracted. Continuous values were used 
(i.e., weighted rather than threshold approach). The graph measures 
calculated included the clustering coefficient, modularity, and charac
teristic path length. The clustering coefficient indicates the extent to 
which neighboring nodes connect to each other (i.e., are clustered 
together) (Berlot et al., 2016). Modularity measures the extent to which 
networks can be partitioned into segregated modules or communities. 
Characteristic path length assesses the average number of steps in the 
shortest paths connecting each pair of nodes (Berlot et al., 2016). 

2.2.5. Dynamic functional network connectivity 
Dynamic FNC techniques allow capturing changes in connectivity 

across brain areas during the assessment. This is important as differences 
in functional activity throughout the MRI scanning procedure have been 
shown (Allen et al., 2014). dFNC is used to identify different functional 
connectivity states or configurations of a participant, and summary 
measures, such as the time spent in each state (mean dwell time (MDT)) 
and the number of transitions across states (NT), can be calculated. Data 
on dFNC were previously obtained and described for the Generation R 
Study (López-Vicente et al., 2021). Briefly, the Group ICA of the fMRI 
Toolbox (GIFT) software was used (GroupICAT v4.0b) (Calhoun et al., 
2001; Calhoun and Adalı, 2012). dFNC was calculated on the subject- 
specific time courses using a sliding window approach. Tapered win
dows of 25 TR (44 s) in steps of 1 TR were used, in line with previous 
literature (Allen et al., 2014; Rashid et al., 2018). A 3 TR alpha 
parameter of the Gaussian sliding window was leveraged (Allen et al., 
2014; Qin et al., 2015). We obtained 171 FNC windows per person. 
Covariance was estimated using regularized inverse covariance matrices 
with a graphical LASSO framework (Friedman et al., 2008; Smith et al., 
2011). To ensure sparsity, an L1 norm constraint on the matrices was 
applied. With cross-validation, we evaluated the log-likelihood of un
seen data for each subject/visit to optimize the regularization param
eter. K-means clustering of the 171 dFNC windows across all individuals 
was used to derive five states that reoccur over time and across subjects 
(López-Vicente et al., 2021). Three of these states were modularized 
with components of intra- and inter-network connectivity while two 
were non– or partially modularized. More specifically, state 1 is a 
modularized state presenting negative interconnectivity between 
subcortical and sensorimotor networks (López-Vicente et al., 2021), 
state 2 was default mode/sensorimotor network modularized while state 
3 was default mode network modularized. States 4 and 5 were non- 
modularized and partially modularized, respectively. States can be 
visualized in Fig. S1, with more information being available in prior 
literature (López-Vicente et al., 2021). The MDT spent in a given state 
and the NT across states per participant and assessment were then 
calculated. 

2.2.6. Psychiatric problems 
We measured psychiatric problems with the school-age version of the 

Child Behavioral Checklist (CBCL) (Achenbach and Rescorla, 2001). The 
CBCL was completed by the primary caregiver to assess children’s psy
chiatric symptoms dimensionally at both the age 10 and age 14 assess
ments. The CBCL is considered a reliable and valid questionnaire, 
generalizable across societies and nationalities (Achenbach and 

Rescorla, 2001; Achenbach et al., 2017; Rescorla et al., 2007). Following 
the ASEBA protocol (Achenbach and Rescorla, 2001), scores were 
calculated by averaging relevant items and allowing a maximum of 25% 
of missing items per participant. Raw scores were square-root trans
formed to address non-normality (see Fig. S2 for distributions). We used 
the broadband measures of psychopathology (internalizing and exter
nalizing symptoms), as well as narrow-band ones (8 syndrome scales: 
attention, thought, social problems, somatic complaints, anxious- 
depressed, withdrawn-depressed, aggressive, and rule-breaking 
behaviors). 

2.3. Covariates 

Covariates included child demographic characteristics (age, sex, and 
national origin), highest achieved maternal education and perceived 
pubertal status. Parental national origin was assessed through ques
tionnaires and summarized into three categories: Dutch, non-Dutch 
European, and non-European. Maternal education was measured with 
self-reported questionnaires and categorized into low (no/primary ed
ucation), intermediate (secondary school, vocational training), and high 
(Bachelor’s degree/University). The perceived pubertal stage was 
assessed at age 14 years based on the Pubertal Development Scale, as an 
average score of the relevant items for each sex (as assigned at birth) 
(Carskadon and Acebo, 1993; Dall’Aglio, Xu, et al., 2022). 

2.4. Statistical analyses 

2.4.1. Main analyses 
All statistical analyses were exploratory and performed in the R 

Statistical Software (version 4.0.1). Of note, we had no a priori hy
potheses as this was the first study on the bidirectionality of associations 
between psychiatric symptoms and FNC. All data analysis scripts are 
publicly available online https://github.com/LorenzaDA/rsfMRI_psych 
iatry_youth_GenR. 

To explore the relations of FNC with psychiatric symptoms in youth, 
we ran the following analyses for static and dynamic FNC measures 
separately. First, we used cross-lagged panel models (CLPMs) to examine 
the longitudinal relations of connectivity with internalizing and exter
nalizing problems, modeling change from late childhood to early 
adolescence. Internalizing and externalizing problems were each 
examined separately. Overall, 3 measures of static connectivity (the 
clustering coefficient, modularity, and characteristic path length), and 6 
measures of dynamic connectivity (MDT at 5 states and the NTs across 
states) were examined in association with internalizing/externalizing 
problems. Multiple testing correction was applied for each set (i.e., dy
namic and static FNC separately) using the false discovery rate method 
(FDR, Benjamini-Hochberg). 

CLPMs are a type of structural equation model that allows for the 
examination of associations between two repeatedly-assessed variables 
simultaneously. This entails that the two variables are both modeled as 
exposures (for their levels at the first assessment (T1)) and as outcomes 
(for their change from T1 to the second assessment (T2)). Several co
efficients are estimated within cross-lagged panel models: (i) lagged 
effects, i.e., longitudinal associations between the exposure at baseline 
and changes in the outcome over time, (ii) covariances, i.e., cross- 
sectional associations between exposure and outcome, (iii) autore
gressive coefficients, i.e., stability of exposure/outcome over time. In 
such models, the covariates’ relationships with exposure and outcomes 
are also considered. In this study, we focused on lagged paths. These 
provided information on whether (i) internalizing/externalizing prob
lems at baseline predicted changes in FNC over time and (ii) FNC at 
baseline predicted changes in internalizing/externalizing problems over 
time. The Lavaan package was used (Rosseel, 2012). The conceptual 
model is shown in Fig. S3. To deal with missing values, we used the full- 
information maximum likelihood approach within Lavaan, which 
involved the leveraging of all available data for the estimation of 
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relevant paths (N = 3,131). 

2.4.2. Non-response analysis 
We conducted a non-response analysis in which we compared non- 

participating children eligible for the assessments at the age of 10 
years to the children in the analyses, based on covariates (parental ed
ucation, self-perceived puberty, child national origin, sex). Independent 
samples t-tests and chi-square tests were used for continuous and cate
gorical variables respectively. 

2.4.3. Sensitivity analyses 
We conducted several sensitivity analyses to further explore the re

sults and to evaluate the robustness of our findings. First, all cross- 
lagged panel models were re-run with the eight CBCL syndrome 
scales, to explore patterns of connectivity for more specific measures of 
psychopathology. Multiple testing correction was applied on static and 
dynamic FNC separately, across all syndrome scales. Second, we eval
uated whether the main models fit similarly to males and females, with 
likelihood ratio tests. More specifically, models grouped by sex where 
regression coefficients were allowed to differ for boys and girls, were 
contrasted with models grouped by sex where regression coefficients 
were restricted to equal across sexes. Third, to ensure that results were 
not dependent on the motion quality control procedures we used, we 
rerun our main analyses using a more stringent threshold for framewise 
displacement (≤0.11 mm instead of 0.25 mm), by excluding participants 
who had a score higher than the top 20% of framewise displacement 
values in our cohort (N for motion sensitivity analysis = 2,971). More
over, we restricted the sample to children with repeated measurement 
data on both FNC and psychiatric problems to ensure results were not 
due to missingness in the exposure and outcome (N = 806). Finally, we 
re-ran the main analyses dichotomizing internalizing and externalizing 
problems based on clinical cut-offs for the CBCL (t-score greater or equal 
to 65) with a total of 201 cases at T1(2,554 controls) and 230 cases at T2 
(2,630 controls) (Achenbach and Rescorla, 2001). 

3. Results 

3.1. Sample characteristics 

We included 3,131 individuals with rs-fMRI and CBCL data at either 
T1 or T2. An approximately equal proportion of males and females was 
included (females n = 1,634 (52%)). Children were, on average, 10 
years old at T1 and 14 years old at T2 (age ranges: 9–13 years (T1), 
13–17 years (T2)) (Table S1). Non-response analyses indicated that 
participants represented the full cohort at T1 in terms of sex, maternal 
education, national origin, and self-perceived pubertal status (Table S2). 

3.2. Static connectivity 

Static FNC properties are shown in Fig. S4 and Table S1. We tested 
the longitudinal relationships between internalizing problems and sFNC 
(characteristic path length, clustering coefficient, modularity) by 
modeling change over time with cross-lagged panel models (Fig. S3). 
The same models were run for externalizing problems. The models fit the 
data well for both broadband scales, as evidenced by the absolute and 
relative model fit indices in Table S3. We did not identify a statistically 
significant relationship between internalizing problems and network 
properties in either temporal direction, i.e., sFNC was not associated 
with changes in psychiatric symptoms (Table 1) nor were psychiatric 
symptoms with changes in sFNC (Table 2). Similar results were observed 
for externalizing problems (Tables 1 and 2). Estimates for longitudinal 
effects ranged from − 0.036 to 0.028, with standard errors ranging from 
0.018 to 0.019 (Tables 1 and 2). Analogous results were found when 
using more stringent motion corrections (Table S4), when restricting the 
sample to children with repeated measurements (Table S5), and when 
dichotomizing internalizing and externalizing problems (Table S6). 

Moreover, we found no evidence of sex differences in the relationships 
between static connectivity and internalizing or externalizing problems, 
as shown by the lack of significant improvement in model fit when 
regression coefficients were allowed to vary vs. be equal across sexes 
(Table S7). 

Longitudinal relations of static connectivity were also tested with 
specific psychiatric problems (i.e., 8 syndrome scales), to explore 
whether associations were present at a more fine-grained level. We did 
not identify any longitudinal associations, in either temporal direction, 
between specific psychiatric problems and static connectivity 
(Table S8). Estimates ranged from − 0.047 to 0.038 and standard errors 
from 0.018 to 0.025 (Table S8). 

3.3. Dynamic FNC 

Dynamic FNC properties are shown in Fig. 1, Panel A, and Table S1. 
We tested the longitudinal bidirectional relationship of internalizing 
problems with dFNC for MDT in 5 connectivity states and the number of 
transitions across states by modeling change with cross-lagged panel 
models (Fig. S3). The same models were run for externalizing problems. 
The models of dFNC with each broadband scale fit the data well, as 
shown in Table S9. 

In the analyses of baseline dFNC with changes in internalizing 
problems (brain → behavior), no significant association was identified, 
before or after multiple testing corrections (pFDR < 0.05) (Table 3). 
Largely similarly negative results were found for dFNC as a determinant 
of changes in externalizing problems (Table 3), although MDT in state 5 
at baseline nominally predicted changes in externalizing problems (es
timate = -0.048; SE = 0.018; p-value = 0.009). This association did not 
surpass multiple testing corrections (pFDR = 0.212) (Table 3), but it was 
robust to stricter motion control in a sensitivity analysis (estimate =
-0.048; SE = 0.019; p-value = 0.010) (Table S10). Of note, regression 
plots suggested this association might be driven by a few children with 
high MDT values in state 5 (Fig. S5). When re-running associations after 

Table 1 
Longitudinal relationships of baseline static functional network connectivity 
with internalizing and externalizing problems changes from late childhood to 
early adolescence (N = 3,131).  

Exposure Estimate SE p-value 

Static FNC T1 → Internalizing problems T2 (corrected for T1 problems) 
Characteristic path length  0.022  0.019  0.241 
Modularity  − 0.021  0.019  0.272 
Clustering Coefficient  − 0.012  0.019  0.523 
Static FNC T1 → Externalizing problems T2 (corrected for T1 problems) 
Characteristic path length  0.013  0.018  0.482 
Modularity  0.000  0.018  0.979 
Clustering coefficient  − 0.014  0.018  0.461 

Notes. FNC = functional network connectivity. SE = standard errors; T = time- 
point. Estimates are standardized. 

Table 2 
Longitudinal associations of baseline internalizing and externalizing problems 
with static functional network connectivity changes from late childhood to early 
adolescence (N = 3,131).  

Outcome Estimate SE p-value 

Internalizing problems T1 → static FNC T2 (corrected for T1 FNC) 
Characteristic path length  0.028  0.024  0.245 
Modularity  − 0.017  0.024  0.474 
Clustering Coefficient  − 0.020  0.025  0.423 
Externalizing problems T1 → static FNC T2 (corrected for T1 FNC) 
Characteristic path length  − 0.009  0.024  0.706 
Modularity  − 0.036  0.024  0.138 
Clustering Coefficient  0.011  0.025  0.647 

Note. FNC = functional network connectivity; SE = standard error; T = time 
point. Estimates are standardized. 
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winsorizing for such extreme values (95th percentile), results were 
similar (Table S11), suggesting that associations are not entirely driven 
by the data distribution. In sensitivity analyses of clinically relevant 
internalizing and externalizing problems, we found that MDT in state 1 
predicted changes in internalizing problems (estimate = 0.054; SE =
0.023; p-value = 0.021), but this finding did not survive multiple testing 
corrections (Table S12). 

For baseline internalizing problems with changes in dFNC (behavior 
→ brain), a relationship with MDT in state 3 was initially observed, for 
analyses across the continuum of psychiatric symptoms (estimate =
-0.052; SE = 0.024; p-value = 0.034) and for clinically-relevant prob
lems (estimate = -0.052; SE = 0.026; p-value = 0.048) (Table S12), but 
these associations did not survive multiple testing correction. Such a 
relationship (continuous score) was also not robust to stricter motion 
quality control (estimate = -0.040; SE = 0.026; p-value = 0.121). We did 
not detect any longitudinal relationship between baseline externalizing 

problems (continuous score) with changes in dFNC in the main analyses. 
For clinically relevant externalizing problems, a relationship with 
changes in MDT in state 3 was found (estimate = -0.061; SE = 0.025; p- 
value = 0.014), but again did not pass multiple testing corrections 
(Table S12). 

Generally, effect sizes were small and ranged from − 0.052 to 0.034, 
with standard errors ranging from 0.019 to 0.025 (Tables 3 and 4). 
Similar results were found when stricter motion control was applied in 
sensitivity analyses (Table S8), and when restricting the sample to 
children with repeated measurements (Table S13). No sex differences for 
internalizing and externalizing problems with MDT and NT in dFNC 
were identified (Table S14). 

Next, the longitudinal relations of dFNC with the specific psychiatric 
problems (i.e., 8 syndrome scales) were tested. For baseline dFNC with 
changes in specific psychiatric problems (brain → behavior), we 
observed that MDT in state 5 determined changes in attention and 

Fig. 1. Baseline psychiatric symptoms and change in dynamic functional connectivity from late childhood to early adolescence. Note. CI = confidence interval; MDT 
= mean dwell time for a given state; NT = number of transitions; T = time-point. All estimates are standardized. A. Raincloud plots for dynamic functional network 
connectivity measures across time-point (t1 = age 10 assessment; t2 = age 14 assessment). B. Relationships between specific psychiatric symptoms (i.e., 8 syndrome 
scales) at baseline, in late childhood (T1), with change in dFNC from late childhood to early adolescence (T2). C. Histograms of the distribution of standardized 
absolute estimates and standard errors for all associations of syndrome scales with dFNC. 
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aggression problems (attention: estimate = -0.056; SE = 0.019; p-value 
= 0.003; pFDR = 0.089; aggression: estimate = -0.056; SE = 0.018; p- 
value = 0.002; pFDR = 0.089) (Table S14; Fig. S5; Table S11). In the 
analyses of baseline psychiatric symptoms with changes in dFNC 
(behavior → brain), as shown in Fig. 1, panel B, we detected several 
nominal associations (regression plots in Fig. S6). Rule-breaking be
haviors at baseline predicted MDT in state 2 over time (estimate =
-0.067; SE = 0.024; p-value = 0.006; pFDR = 0.119), somatic and thought 
problems for MDT in state 3 (somatic: estimate = -0.080; SE = 0.025; p- 
value = 0.001; pFDR = 0.089; thought: estimate = -0.055; SE = 0.024; p- 
value = 0.023; pFDR = 0.322), attention problems for MDT in state 4 
(estimate = 0.056; SE = 0.023; p-value = 0.017; pFDR = 0.271), and 
thought problems predicted change in NT (estimate = 0.067; SE =
0.024; p-value = 0.006; pFDR = 0.119) (Table S14). None of these as
sociations survived multiple testing corrections. Overall, median abso
lute effect sizes were 0.009, while median standard errors were larger, 
0.023 (Fig. 1, panel C). 

4. Discussion 

4.1. Key findings in light of prior literature 

This is the largest single-site longitudinal study of static and dynamic 
functional network connectivity and psychiatric symptoms in youth. 

Overall, we did not observe any robust longitudinal association between 
static (general network properties) or dynamic (5 states) FNC with 
psychiatric problems from age 9 to 17 in the Dutch general population. 
Some suggestive evidence for longitudinal associations between specific 
psychiatric problems (rule-breaking, somatic complaints, thought, and 
attention problems) and dynamic FNC was observed, especially when 
psychiatric symptoms at baseline predicted changes in dynamic FNC. 
Yet, none of these associations survived the high multiple-testing 
burden. Relationships must be confirmed in future investigations of 
specific psychiatric symptoms and changes in FNC dynamicity and will 
thus be discussed only briefly. 

The effect sizes observed here were generally small, based on 
benchmarks from the Adolescent Brain Cognitive Development (ABCD) 
Study (Owens et al., 2021). For instance, the magnitude of effects was 
similar to the cross-sectional relationships of age and prosocial behavior 
(estimate = 0.01) (Owens et al., 2021). Moreover, for dFNC, our effect 
sizes were approximately an order of magnitude smaller than the effects 
of sex or age on dFNC, as previously found in the Generation R Study 
within the same timeframe (López-Vicente et al., 2021). Further, given 
the relatively large standard errors we observed, we cannot rule out any 
true effects may be even smaller. This supports that no or only minor 
associations are likely present between the brain graph and state-based 
FNC with psychiatric symptoms during the transition from late child
hood to adolescence in this population-based cohort. This is in line with 
other large studies investigating cross-sectional relationships between 
psychiatric problems and FNC in ABCD, which is also population-based 
and sampled 10 to 12-year-olds (Cai et al., 2021; Karcher et al., 2019). 

Only a few associations stood out due to their larger effect estimates 
(Fig. 1, panel B). These are discussed below. Given the exploratory 
nature of this study and our high multiple-testing burden, they may 
simply be chance findings and should thus be considered with the 
utmost care. However, it has been recently suggested that multiple 
testing corrections may be overly stringent and determine an excess of 
false-negative results (Marek et al., 2022). A careful discussion of some 
of these associations may, therefore, be beneficial for future research, 
with replication being pivotal to evaluating their relevance (Marek 
et al., 2022). 

For static FNC, no relationships were observed before or after mul
tiple testing corrections for any psychiatric problem. For dynamic FNC, 
we observed nominal relationships for MDT in state 5 with changes in 
externalizing problems (brain → behavior), which, when further 
exploring results, seemed to be driven by aggressive symptoms. Asso
ciations of MDT in state 5 in late childhood with attention problems in 
adolescence were also observed. State 5 is a partially modularized state, 
in which children spend less time as they age, and is marked by sub- 
modules within networks with distinct connectivity configurations 
(López-Vicente et al., 2021). Externalizing, aggressive, and attention 
problems generally decrease with age (Verhulst and van der Ende, 
1992). In light of this context, our study suggests that higher MDT in 
state 5 in late childhood might predict smaller decreases in externalizing 
problems, aggressive symptoms, and attention problems over 
adolescence. 

In the opposite temporal direction (behavior → brain), several spe
cific psychiatric problems predicted changes in dynamic FNC. Rule- 
breaking behaviors related to MDT in state 2, which is a default- 
mode/sensorimotor network modularized state relatively stable from 
late childhood to early adolescence (López-Vicente et al., 2021). Inter
estingly, cross-sectional associations of externalizing/conduct problems 
with default-mode network functional connectivity have been previ
ously reported in children and adolescents (Dalwani et al., 2014; Sato 
et al., 2015). Additionally, somatic complaints and thought problems at 
baseline predicted smaller changes in MDT in state 3. This is a default- 
mode network modularized state in which youth spend less time as 
they grow (López-Vicente et al., 2021). Somatic symptom disorder and 
schizophrenia were previously associated with differential default mode 
network connectivity (Broyd et al., 2009; Kim et al., 2019). Higher 

Table 3 
Longitudinal associations of baseline dynamic functional network connectivity 
with internalizing and externalizing problem changes from late childhood to 
early adolescence (N = 3,131).  

Exposure Estimate SE p-value 

Dynamic FNC T1 → Internalizing problems T2 (corrected for T1 problems) 
Mean dwell time state 1  0.014  0.019  0.457 
Mean dwell time state 2  − 0.013  0.019  0.493 
Mean dwell time state 3  0.007  0.019  0.719 
Mean dwell time state 4  0.029  0.019  0.128 
Mean dwell time state 5  − 0.014  0.019  0.465 
Number of transitions  0.006  0.019  0.758 
Dynamic FNC T1 → Externalizing problems T2 (corrected for T1 problems) 
Mean dwell time state 1  0.028  0.019  0.131 
Mean dwell time state 2  0.014  0.018  0.448 
Mean dwell time state 3  0.029  0.018  0.113 
Mean dwell time state 4  0.024  0.019  0.197 
Mean dwell time state 5  − 0.048  0.018  0.009 
Number of transitions  0.017  0.018  0.365 

Note. FNC = functional network connectivity; SE = standard error; T = time- 
point. Estimates are standardized. 

Table 4 
Longitudinal associations of baseline internalizing and externalizing problems 
with dynamic functional network connectivity changes from late childhood to 
early adolescence (N = 3,131).  

Outcome Estimate SE p-value 

Internalizing problems T1 → Dynamic FNC T2 (corrected for T1 FNC) 
Mean dwell time state 1  − 0.024  0.025  0.341 
Mean dwell time state 2  0.004  0.024  0.870 
Mean dwell time state 3  − 0.052  0.024  0.034 
Mean dwell time state 4  − 0.017  0.024  0.462 
Mean dwell time state 5  0.022  0.025  0.378 
Number of transitions  0.034  0.025  0.162 
Externalizing problems T1 → Dynamic FNC T2 (corrected for T1 FNC) 
Mean dwell time state 1  0.022  0.025  0.386 
Mean dwell time state 2  − 0.032  0.024  0.181 
Mean dwell time state 3  − 0.042  0.024  0.089 
Mean dwell time state 4  − 0.020  0.024  0.411 
Mean dwell time state 5  0.021  0.025  0.394 
Number of transitions  0.020  0.025  0.405 

Note. FNC = functional network connectivity; SE = standard error; T = time- 
point. Estimates are standardized. 
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attention problems were associated with larger changes in MDT in state 
4, a non-modularized state children spend less time in as they age, 
especially girls (López-Vicente et al., 2021). Finally, thought problems 
predicted changes in the number of transitions across states. While 
typically lower transitions are expected as children age (López-Vicente 
et al., 2021), with higher thought problems, larger decreases were 
observed. Importantly, a prior study in the Generation R cohort sug
gested that behavioral problems influence brain structural connectivity 
change from early to late childhood (Muetzel et al., 2017), although 
these results were not found in a study of late childhood into early 
adolescence (Dall’Aglio, Xu, et al., 2022). As evidence of reverse cau
sality (behavior → brain) is only emerging, it warrants further in
vestigations. Moreover, since dFNC is a novel approach, the literature on 
the topic remains scarce; future research on its relationship with psy
chiatric symptoms is particularly desirable. 

Importantly, some inconsistencies with prior literature on FNC and 
psychiatric problems are evident. Altered network topology and dFNC 
were generally found in individuals with psychiatric disorders, 
compared to controls (Damaraju et al., 2014; de Lacy and Calhoun, 
2018; Ma et al., 2014; Saad et al., 2017; Sendi et al., 2021; Wu et al., 
2019; Zhi et al., 2018). Divergent results may stem from differences in 
several study aspects, such as the population drawn (clinical vs. 
population-based; age range), study design (cross-sectional vs. longitu
dinal), and sample sizes. 

Previous studies generally focused on clinical populations with high 
levels of psychiatric problems. These often use highly selected groups for 
comparison, which may lead to stronger associations when compared to 
population-based samples, where the whole spectrum of symptom 
severity is examined. Our statistical power might have been hampered if 
the signal at the lower vs upper levels of psychiatric symptom severity 
differs. When considering children with and without clinically relevant 
symptoms of internalizing and externalizing problems, no statistically 
significant associations were identified after multiple testing correc
tions. However, the effect sizes were generally larger compared to when 
psychiatric symptoms were considered on a continuum. This might 
indicate greater discriminatory power of clinically-relevant problems, 
but it may also be the result of lower power and a higher chance for 
inflated effect sizes given by the restriction of the sample (ncases ~ 200) 
(Marek et al., 2022). Overall, we suggest that future studies investigate 
such associations in large high-risk populations. 

Moreover, while we sampled children and adolescents, prior litera
ture generally focused on adults. It is possible that more substantial 
differences in FNC are observed later in life. Yet, some of the largest 
lifetime changes in brain neuroanatomy occur in childhood (Bethlehem 
et al., 2022). Further studies in early life are, therefore, necessary. 
However, the time window we sampled may have several drawbacks as 
adolescence is characterized by substantial interindividual variation 
(Galván, 2017; Rutter and Sroufe, 2000). 

Inconsistencies with prior literature may also stem from the use of 
cross-sectional vs. longitudinal designs. It is not surprising that a longitu
dinal design would lead to the identification of smaller associations than 
a cross-sectional one. Cross-sectional studies, especially those focused 
on adults, might detect relationships between functional connectivity 
and psychiatric problems which could reflect life-long brain-behavior 
relationships. Longitudinal studies can instead dissect associations at a 
specific time point. 

Further, our negative results should be considered in the context of 
key challenges in the psychiatric neuroimaging field: small sample sizes, 
publication bias, and analytical flexibility. Specifically, small samples 
are more prone to population variability and thus capture effects that are 
inflated by chance (Marek et al., 2022). This problem is reduced as 
samples get larger (Marek et al., 2022). This may have made our sample 
less prone to chance findings. Moreover, inflated effects (e.g., due to 
chance or biases) are more likely to be statistically significant. These 
findings may be inadvertently overrepresented in the literature (Button 
et al., 2013; Marek et al., 2022), while negative results may have been 

overlooked (Button et al., 2013) (i.e., publication bias may have 
occurred). Such a focus on statistical significance may also make certain 
analytical choices more preferable than others (Gelman and Loken, 
2013). Overall, when accounting for these key challenges in the field, 
our negative results may not be that unexpected. 

4.2. Strengths and limitations of the present study 

Several strengths of this study should be discussed. First, we lever
aged a large single-site pediatric sample with repeated measurements on 
both static and dynamic FNC. Second, we used longitudinal modeling to 
examine the relationship between FNC and psychiatric problems over 
time, accounting for changes from childhood to adolescence. This allows 
moving closer to a causal understanding of these associations by 
removing prior brain-behavior relationships and disentangling temporal 
directionality. Third, children were sampled during a key develop
mental period, in which substantial neuro- and psychiatric development 
changes occur: brain reorganization takes place and psychiatric prob
lems such as anxiety and depression generally arise or exacerbate (Lee 
et al., 2014; Vijayakumar et al., 2018). 

This study also presents several limitations. We did not leverage an 
independent sample to test the replicability and generalizability of our 
findings. Future work is thus required to appropriately evaluate our 
results. Additionally, while our study was the largest to date on the 
topic, approximately two-thirds of the sample did not have repeated 
data. Yet, when restricting the sample to youth with complete data, 
similar results were observed, suggesting the robustness of the findings. 
Nevertheless, such missingness might have prevented the capturing of 
smaller effects between FNC and psychiatric symptoms. Further, while 
cross-lagged panel models are generally used to assess relationships 
between two repeatedly-assessed variables simultaneously, they present 
several limitations(Usami, 2021). More advanced modeling techniques 
(e.g., random-intercept CLPMs) should be used in future studies. 
Moreover, we could not account for intraindividual variability across 
time due to our limited number of repeated assessments. Given the high 
interindividual differences in FNC, future studies with more than two 
repeated assessments could explore how relationships between FNC and 
psychiatric symptoms vary across individuals, both in terms of starting 
levels (random intercepts) and developmental rates (random slopes). 
Additionally, resting-state scans in the Generation R sample are rela
tively short compared to other studies. While their duration is sufficient 
to reliably capture static FNC in youth (Muetzel et al., 2016; White et al., 
2014), there are advantages in adopting a longer scan duration, which 
may be especially required to asses the full variation in dynamic FNC 
(Shakil et al., 2016). 

5. Conclusion 

We explored the longitudinal relationship between static and dy
namic FNC with psychiatric symptoms in a large (N = 3,131) 
population-based sample of youths, leveraging repeated measurements 
that allowed us to model change over time. Only small, longitudinal 
relationships were observed. While some associations stood out due to 
their larger effect sizes, namely for specific psychiatric problems in 
childhood (i.e., rule-breaking, somatic complaints, thought problems, 
and attention problems) with dFNC changes into adolescence, these 
warrant careful interpretations and replication. Future studies should 
replicate our findings, leverage larger samples, or more repeated as
sessments to detect smaller effects and model intraindividual variation. 
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Munafò, M.R., 2013. Power failure: Why small sample size undermines the reliability 
of neuroscience. Nat. Rev. Neurosci. 14 (5), 365–376. https://doi.org/10.1038/ 
nrn3475. 

Cai, Y., Elsayed, N.M., Barch, D.M., 2021. Contributions from resting state functional 
connectivity and familial risk to early adolescent-onset MDD: Results from the 
Adolescent Brain Cognitive Development study. J. Affect. Disord. 287, 229–239. 
https://doi.org/10.1016/j.jad.2021.03.031. 

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., 2001. A method for making group 
inferences from functional MRI data using independent component analysis. Hum. 
Brain Mapp. 14 (3), 140–151. https://doi.org/10.1002/hbm.1048. 

Calhoun, V.D., Adalı, T., 2012. Multi-subject Independent Component Analysis of fMRI: 
A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery. IEEE 
Rev. Biomed. Eng. 5, 60–73. https://doi.org/10.1109/RBME.2012.2211076. 

Canario, E., Chen, D., Biswal, B., 2021. A review of resting-state fMRI and its use to 
examine psychiatric disorders. Psychoradiology 1 (1), 42–53. https://doi.org/ 
10.1093/psyrad/kkab003. 

Carskadon, M.A., Acebo, C., 1993. A self-administered rating scale for pubertal 
development. J. Adolesc. Health 14 (3), 190–195. https://doi.org/10.1016/1054- 
139X(93)90004-9. 

Dall’Aglio, L., Xu, B., Tiemeier, H., & Muetzel, R. L. (2022). Longitudinal Associations 
Between White Matter Microstructure and Psychiatric Symptoms in Adolescence | 
medRxiv. https://www.medrxiv.org/content/10.1101/2022.08.27.22279298v1. 

Dall’Aglio, L., Kim, H. H., Lamballais, S., Labrecque, J., Muetzel, R. L., & Tiemeier, H. 
(2022). Attention deficit hyperactivity disorder symptoms and brain morphology: 
Examining confounding bias. ELife, 11, e78002. https://doi.org/10.7554/ 
eLife.78002. 

Dalwani, M.S., Tregellas, J.R., Andrews-Hanna, J.R., Mikulich-Gilbertson, S.K., 
Raymond, K.M., Banich, M.T., Crowley, T.J., Sakai, J.T., 2014. Default mode 
network activity in male adolescents with conduct and substance use disorder. Drug 
Alcohol Depend. 134, 242–250. https://doi.org/10.1016/j.drugalcdep.2013.10.009. 

Damaraju, E., Allen, E.A., Belger, A., Ford, J.M., McEwen, S., Mathalon, D.H., Mueller, B. 
A., Pearlson, G.D., Potkin, S.G., Preda, A., Turner, J.A., Vaidya, J.G., van Erp, T.G., 
Calhoun, V.D., 2014. Dynamic functional connectivity analysis reveals transient 
states of dysconnectivity in schizophrenia. NeuroImage: Clin. 5, 298–308. https:// 
doi.org/10.1016/j.nicl.2014.07.003. 

de Lacy, N., Calhoun, V.D., 2018. Dynamic connectivity and the effects of maturation in 
youth with attention deficit hyperactivity disorder. Network Neurosci. 3 (1), 
195–216. https://doi.org/10.1162/netn_a_00063. 

Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Erramuzpe, A., Kent, J. 
D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S.S., Wright, J., Durnez, J., 
Poldrack, R.A., Gorgolewski, K.J., 2019. fMRIPrep: A robust preprocessing pipeline 
for functional MRI. Nat. Methods 16 (1), 111–116. 

Fonov, V., Evans, A., McKinstry, R., Almli, C., Collins, D., 2009. Unbiased nonlinear 
average age-appropriate brain templates from birth to adulthood. Neuroimage 47, 
S102. https://doi.org/10.1016/S1053-8119(09)70884-5. 

Fornito, A., Zalesky, A., Bullmore, E., 2016. Fundamentals of Brain Network Analysis. 
Academic Press. 

Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation with 
the graphical lasso. Biostatistics (Oxford, England) 9 (3), 432–441. https://doi.org/ 
10.1093/biostatistics/kxm045. 

Galván, A., 2017. Adolescence, brain maturation and mental health. Nat. Neurosci. 20 
(4), Article 4. https://doi.org/10.1038/nn.4530. 

L. Dall’Aglio et al.                                                                                                                                                                                                                              

https://www.surfsara.nl
https://doi.org/10.1016/j.nicl.2023.103382
https://doi.org/10.1016/j.nicl.2023.103382
https://doi.org/10.1016/j.comppsych.2017.03.006
https://doi.org/10.1016/j.comppsych.2017.03.006
https://doi.org/10.1002/hbm.24539
https://doi.org/10.1089/brain.2020.0768
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0025
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://www.frontiersin.org/article/10.3389/fnagi.2016.00292
https://www.frontiersin.org/article/10.3389/fnagi.2016.00292
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1016/j.neubiorev.2008.09.002
https://doi.org/10.1038/nrn3475
https://doi.org/10.1038/nrn3475
https://doi.org/10.1016/j.jad.2021.03.031
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1109/RBME.2012.2211076
https://doi.org/10.1093/psyrad/kkab003
https://doi.org/10.1093/psyrad/kkab003
https://doi.org/10.1016/1054-139X(93)90004-9
https://doi.org/10.1016/1054-139X(93)90004-9
https://doi.org/10.1016/j.drugalcdep.2013.10.009
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1162/netn_a_00063
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0115
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0115
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0115
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0115
https://doi.org/10.1016/S1053-8119(09)70884-5
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0125
http://refhub.elsevier.com/S2213-1582(23)00071-2/h0125
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1038/nn.4530


NeuroImage: Clinical 38 (2023) 103382

9

Garvey, M., Avenevoli, S., Anderson, K., 2016. The National Institute of Mental Health 
Research Domain Criteria and Clinical Research in Child and Adolescent Psychiatry. 
J. Am. Acad. Child Adolesc. Psychiatry 55 (2), 93–98. https://doi.org/10.1016/j. 
jaac.2015.11.002. 

Gelman, A., & Loken, E. (2013). The garden of forking paths: Why multiple comparisons 
can be a problem, even when there is no “fishing expedition” or “p-hacking” and the 
research hypothesis was posited ahead of time. Department of Statistics, Columbia 
University, 348, 1–17. 

Karcher, N.R., O’Brien, K.J., Kandala, S., Barch, D.M., 2019. Resting-State Functional 
Connectivity and Psychotic-like Experiences in Childhood: Results From the 
Adolescent Brain Cognitive Development Study. Biol. Psychiatry 86 (1), 7–15. 
https://doi.org/10.1016/j.biopsych.2019.01.013. 

Kim, S.M., Hong, J.S., Min, K.J., Han, D.H., 2019. Brain Functional Connectivity in 
Patients With Somatic Symptom Disorder. Psychosom. Med. 81 (3), 313–318. 
https://doi.org/10.1097/PSY.0000000000000681. 

Kooijman, M.N., Kruithof, C.J., van Duijn, C.M., Duijts, L., Franco, O.H., van 
IJzendoorn, M.H., de Jongste, J.C., Klaver, C.C.W., van der Lugt, A., Mackenbach, J. 
P., Moll, H.A., Peeters, R.P., Raat, H., Rings, E.H.H.M., Rivadeneira, F., van der 
Schroeff, M.P., Steegers, E.A.P., Tiemeier, H., Uitterlinden, A.G., Verhulst, F.C., 
Wolvius, E., Felix, J.F., Jaddoe, V.W.V., 2016. The Generation R Study: Design and 
cohort update 2017. Eur. J. Epidemiol. 31 (12), 1243–1264. 

La Plante, R. (2022). bctpy: Brain Connectivity Toolbox for Python (0.5.2) [Python]. 
https://github.com/aestrivex/bctpy. 

Lee, F.S., Heimer, H., Giedd, J.N., Lein, E.S., Šestan, N., Weinberger, D.R., Casey, B.J., 
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