6 research outputs found

    Responding to Communicable Diseases in Internationally Mobile Populations at Points of Entry and along Porous Borders, Nigeria, Benin, and Togo

    No full text
    Recent multinational disease outbreaks demonstrate the risk of disease spreading globally before public health systems can respond to an event. To ensure global health security, countries need robust multisectoral systems to rapidly detect and respond to domestic or imported communicable diseases. The US Centers for Disease Control and Prevention International Border Team works with the governments of Nigeria, Togo, and Benin, along with Pro-Health International and the Abidjan-Lagos Corridor Organization, to build sustainable International Health Regulations capacities at points of entry (POEs) and along border regions. Together, we strengthen comprehensive national and regional border health systems by developing public health emergency response plans for POEs, conducting qualitative assessments of public health preparedness and response capacities at ground crossings, integrating internationally mobile populations into national health surveillance systems, and formalizing cross-border public health coordination. Achieving comprehensive national and regional border health capacity, which advances overall global health security, necessitates multisectoral dedication to the aforementioned components

    Case study of Argus in Togo: An SMS and web-based application to support public health surveillance, results from 2016 to 2019.

    No full text
    IntroductionArgus is an open source electronic solution to facilitate the reporting and management of public health surveillance data. Its components include an Android-phone application, used by healthcare facilities to report results via SMS; and a central server located at the Ministry of Health, displaying aggregated results on a web platform for intermediate and central levels. This study describes the results of the use of Argus in two regions of Togo.MethodsArgus was used in 148 healthcare facilities from May 2016 to July 2018, expanding to 185 healthcare facilities from July 2018. Data from week 21 of 2016 to week 12 of 2019 was extracted from the Argus database and analysed. An assessment mission took place in August 2016 to collect users' satisfaction, to estimate the concordance of the received data with the collected data, and to estimate the time required to report data with Argus.ResultsOverall completeness of data reporting was 76%, with 80% of reports from a given week being received before Tuesday 9PM. Concordance of data received from Argus and standard paper forms was 99.7%. Median time needed to send a report using Argus was 4 minutes. Overall completeness of data review at district, regional, and central levels were 89%, 68%, and 35% respectively. Implementation cost of Argus was 23 760 USD for 148 facilities.ConclusionsThe use of Argus in Togo enabled healthcare facilities to send weekly reports and alerts through SMS in a user-friendly, reliable and timely manner. Reengagement of surveillance officers at all levels, especially at the central level, enabled a dramatic increase in completeness and timeliness of data report and data review

    Emergence of Lassa Fever Disease in Northern Togo: Report of Two Cases in Oti District in 2016

    No full text
    International audienceBackground: Lassa fever belongs to the group of potentially fatal hemorrhagic fevers, never reported in Togo. The aim of this paper is to report the first two cases of Lassa fever infection in Togo.Case presentation: The two first Lassa fever cases occurred in two expatriate's health professionals working in Togo for more than two years. The symptoms appeared among two health professionals of a clinic located in Oti district in the north of the country. The absence of clinical improvement after antimalarial treatment and the worsening of clinical symptoms led to the medical evacuation. The delayed diagnosis of the first case led to a fatal outcome. The second case recovered under ribavirin treatment.Conclusion: The emergence of this hemorrhagic fever confirms the existence of Lassa fever virus in Togo. After a period of intensive Ebola virus transmission from 2013 to 2015, this is an additional call for the establishment and enhancement of infection prevention and control measures in the health care setting in West Africa

    Prevalence of SARS-CoV-2 among high-risk populations in Lomé (Togo) in 2020.

    No full text
    BackgroundIn December 2019, the COVID-19 outbreak began in China and quickly spread throughout the world and was reclassified as a pandemic in March 2020. The first case of COVID-19 was declared in Togo on March 5. Two months later, few data were available to describe the circulation of the new coronavirus in the country.ObjectiveThis survey aimed to estimate the prevalence of SARS-CoV-2 in high-risk populations in Lomé.Materials and methodsFrom April 23, 2020, to May 8, 2020, we recruited a sample of participants from five sectors: health care, air transport, police, road transport and informal. We collected oropharyngeal swabs for direct detection through real-time reverse transcription polymerase chain reaction (rRT-PCR) and blood for antibody detection by serological tests. The overall prevalence (current and past) of infection was defined by positivity for both tests.ResultsA total of 955 participants with a median age of 36 (IQR 32-43) were included, and 71.6% (n = 684) were men. Approximately 22.1% (n = 212) were from the air transport sector, 20.5% (n = 196) were from the police sector, and 38.7% (n = 370) were from the health sector. Seven participants (0.7%, 95% CI: 0.3-1.6%) had a positive rRT-PCR test result at the time of recruitment, and nine (0.9%, 95% CI: 0.4-1.8%) were seropositive for IgM or IgG against SARS-CoV-2. We found an overall prevalence of 1.6% (n = 15), 95% CI: 0.9-2.6%.ConclusionThe prevalence of SARS-CoV-2 infection among high-risk populations in Lomé was relatively low and could be explained by the various measures taken by the Togolese government. Therefore, we recommend targeted screening
    corecore