8 research outputs found
Yeast as a Versatile Tool in Biotechnology
Yeasts represent a very diverse group of microorganisms, and even strains that are classified as the same species often show a high level of genetic divergence. Yeasts biodiversity is closely related to their applicability. Biotechnological importance of yeast is almost immeasurable. For centuries, people have exploited its enzymatic potential to produce fermented food as bread or alcoholic beverages. Admittedly, yeasts application was initially instinctual, but with science and technology development, these microorganisms got the object of thorough scientific investigations. It must be recognized that yeast represents an excellent scientific model because of its eukaryotic origin and knowledge of genetics of yeast cells as well as metabolism examined in detail. In 1996, the genome of baker yeast Saccharomyces cerevisiae has been elucidated, what opened the opportunity for the global study of the expression and functioning of the eukaryotic genome. Also, currently, an international team is working on the synthesis of the 16 yeast chromosomes by synthetic biology tools, and the results are expected till the end of the year. Nowadays, yeast is regarded as a versatile tool for biotechnological purposes
Processing, mechanical and morphological properties of GTR modified by SBS copolymers
In this work, ground tire rubber (GTR) was thermo-mechanically treated in the presence of styrene-butadiene-styrene (SBS) copolymers. During preliminary investigation, the effects of different SBS copolymer grades, the variable content of SBS copolymer on the Mooney viscosity, and the thermal and mechanical properties of modified GTR were determined. Subsequently, GTR modified by SBS copolymer and cross-linking agents (sulfur-based system and dicumyl peroxide) was characterized by assessment of rheological, physico-mechanical, and morphological properties. Rheological investigations showed that linear SBS copolymer, with the highest melt flow rate among studied SBS grades, was the most promising modifier of GTR, considering processing behavior. It was also observed that an SBS improves the thermal stability of the modified GTR. However, it was found that higher content of SBS copolymer (above 30 wt%) does not bring any effective changes and, for economic reasons, is inefficient. The results showed that samples based on GTR modified by SBS and dicumyl peroxide have better processability and slightly higher mechanical properties compared to samples cross-linked by a sulfur-based system. This is due to the affinity of dicumyl peroxide to the co-cross-linking of GTR and SBS phasesThe authors are grateful for the research foundation of project WPC 2/SUSDEV4REC/2021, supported by the National Centre for Research and Development (Poland), and project 2021YFE0105200, supported by the Ministry of Science and Technology (China)Postprint (published version
Multiple Reprocessing of Conductive PLA 3D-Printing Filament: Rheology, Morphology, Thermal and Electrochemical Properties Assessment
Additive manufacturing technologies are gaining more and more attention, resulting in the development or modification of 3D printing techniques and dedicated materials. On the other hand, economic and ecological aspects force the industry to develop material recycling strategies. In this work, the multiple reprocessing of a commercially available PLA conductive composite with carbon black filler, dedicated to 3D printing, was investigated. The effects of extrusion temperature (190 °C and 200 °C) and reprocessing steps (1–5 steps) on the rheology, morphology, thermal and electrochemical properties of the conductive PLA 3D-printing filament were evaluated. The results showed deterioration of the thermal stability and material strength, as well as the influence of reprocessing on the melting point, which increases after initial melting. The electronic conduction mechanism of the composite depends on the percolation paths and it is also affected by the multiple processing. The reversibility of the [Fe(CN)6]3−/4− redox process diminishes with a higher degradation level of the conductive PLA. Importantly, the material fluidity was too high after the multiple reprocessing, which should be considered and suitably corrected during CB–PLA application as a 3D-printed electrode material
Around "French theory"
Dyskusja obejmowała zagadnienia: 1. Genologia polskiej "French Theory". 2. Humanistyka (polska) po dekonstrukcji. 3. Tekstualny świat? 4. Efekt Foucaulta. 5. Witkacy - "French Theory" przed "French Theory"? 6. Dlaczego "French Theory". 7. Teoria postkolonialna/geografia krytyczn