52 research outputs found

    Novel candidate genes underlying extreme trophic specialization in Caribbean pupfishes

    Get PDF
    The genetic changes responsible for evolutionary transitions from generalist to specialist phenotypes are poorly understood. Here we examine the genetic basis of craniofacial traits enabling novel trophic specialization in a sympatric radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. This recent radiation consists of a generalist species and two novel specialists: a small-jawed "snail-eater" and a large-jawed "scale-eater." We genotyped 12 million single nucleotide polymorphisms (SNPs) by whole-genome resequencing of 37 individuals of all three species from nine populations and integrated genome-wide divergence scans with association mapping to identify divergent regions containing putatively causal SNPs affecting jaw size-the most rapidly diversifying trait in this radiation. A mere 22 fixed variants accompanied extreme ecological divergence between generalist and scale-eater species. We identified 31 regions (20 kb) containing variants fixed between specialists that were significantly associated with variation in jaw size which contained 11 genes annotated for skeletal system effects and 18 novel candidate genes never previously associated with craniofacial phenotypes. Six of these 31 regions showed robust signs of hard selective sweeps after accounting for demographic history. Our data are consistent with predictions based on quantitative genetic models of adaptation, suggesting that the effect sizes of regions influencing jaw phenotypes are positively correlated with distance between fitness peaks on a complex adaptive landscape

    The road not taken: Could stress-specific mutations lead to different evolutionary paths?

    No full text
    Organisms often encounter stressful conditions, some of which damage their DNA. In response, some organisms show a high expression of error-prone DNA repair machinery, causing a temporary increase in the genome-wide mutation rate. Although we now have a detailed map of the molecular mechanisms underlying such stress-induced mutagenesis (SIM), it has been hotly debated whether SIM alters evolutionary dynamics. Key to this controversy is our poor understanding about which stresses increase mutagenesis and their long-term consequences for adaptation. In a new study with Escherichia coli, Maharjan and Ferenci show that while only some nutritional stresses (phosphorous and carbon limitation) increase total mutation rates, each stress generates a unique spectrum of mutations. Their results suggest the potential for specific stresses to shape evolutionary dynamics and highlight the necessity for explicit tests of the long-term evolutionary impacts of SIM

    The red flour beetle Tribolium castaneum: A model for host-microbiome interactions.

    No full text
    A large body of ongoing research focuses on understanding the mechanisms and processes underlying host-microbiome interactions, and predicting their ecological and evolutionary outcomes. To draw general conclusions about such interactions and understand how they are established, we must synthesize information from a diverse set of species. We analysed the microbiome of an important insect model-the red flour beetle Tribolium castaneum-which is a widespread generalist pest of stored cereals. The beetles complete their entire life cycle in flour, which thus serves multiple functions: habitat, food, and a source of microbes. We determined key factors that shape the T. castaneum microbiome, established protocols to manipulate it, and tested its consequences for host fitness. We show that the T. castaneum microbiome is derived from flour-acquired microbes, and varies as a function of (flour) resource and beetle density. Beetles gain multiple fitness benefits from their microbiome, such as higher fecundity, egg survival, and lifespan; and reduced cannibalism. In contrast, the microbiome has a limited effect on development rate, and does not enhance pathogen resistance. Importantly, the benefits are derived only from microbes in the ancestral resource (wheat flour), and not from novel resources such as finger millet, sorghum, and corn. Notably, the microbiome is not essential for beetle survival and development under any of the tested conditions. Thus, the red flour beetle is a tractable model system to understand the ecology, evolution and mechanisms of host-microbiome interactions, while closely mimicking the host species' natural niche

    Data from: Experimental evolution of insect immune memory versus pathogen resistance

    No full text
    Under strong pathogen pressure, insects often evolve resistance to infection. Many insects are also protected via immune memory (‘immune priming’), whereby sub-lethal exposure to a pathogen enhances survival after secondary infection. Theory predicts that immune memory should evolve when the pathogen is highly virulent, or when pathogen exposure is relatively rare. However, there are no empirical tests of these hypotheses, and the adaptive benefits of immune memory relative to direct resistance against a pathogen are poorly understood. To determine the selective pressures and ecological conditions that shape immune evolution, we imposed strong pathogen selection on flour beetle (Tribolium castaneum) populations, infecting them with Bacillus thuringiensis (Bt) for 11 generations. Populations injected first with heat-killed and then live Bt each generation evolved high basal resistance against multiple Bt strains. In contrast, populations injected only with a high dose of live Bt evolved a less effective but strain-specific priming response. Control populations injected with heat-killed Bt did not evolve priming; and in the ancestor, priming was effective only against a low Bt dose. Intriguingly, one replicate population first evolved priming and subsequently evolved basal resistance, suggesting the potential for dynamic evolution of different immune strategies. Our work is the first report showing that pathogens can select for rapid modulation of insect priming ability, allowing hosts to evolve divergent immune strategies (generalized resistance vs. specific immune memory) with potentially distinct mechanisms

    Data from: Early-life inflammation, immune response and ageing

    No full text
    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response

    Data from: Dietary and developmental shifts in butterfly-associated bacterial communities

    No full text
    Bacterial communities associated with insects can substantially influence host ecology, evolution and behavior. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analyzed bacterial communities of 12 butterfly species across different development stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly,only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbor distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts

    Host dietary specialization and neutral assembly shape gut bacterial communities of wild dragonflies

    No full text
    Host-associated gut microbiota can have significant impacts on host ecology and evolution and are often host-specific. Multiple factors can contribute to such host-specificity: (1) host dietary specialization passively determining microbial colonization, (2) hosts selecting for specific diet-acquired microbiota, or (3) a combination of both. The latter possibilities indicate a functional association and should produce stable microbiota. We tested these alternatives by analyzing the gut bacterial communities of six species of wild adult dragonfly populations collected across several geographic locations. The bacterial community composition was predominantly explained by sampling location, and only secondarily by host identity. To distinguish the role of host dietary specialization and host-imposed selection, we identified prey in the guts of three dragonfly species. Surprisingly, the dragonflies–considered to be generalist predators–consumed distinct prey; and the prey diversity was strongly correlated with the gut bacterial profile. Such host dietary specialization and spatial variation in bacterial communities suggested passive rather than selective underlying processes. Indeed, the abundance and distribution of 72% of bacterial taxa were consistent with neutral community assembly; and fluorescent in situ hybridization revealed that bacteria only rarely colonized the gut lining. Our results contradict the expectation that host-imposed selection shapes the gut microbiota of most insects, and highlight the importance of joint analyses of diet and gut microbiota of natural host populations
    • …
    corecore