128 research outputs found

    Functional morphology of the blood-brain barrier in health and disease

    Get PDF
    The adult quiescent blood-brain barrier (BBB), a structure organised by endothelial cells through interactions with pericytes, astrocytes, neurons and microglia in the neurovascular unit, is highly regulated but fragile at the same time. In the past decade, there has been considerable progress in understanding not only the molecular pathways involved in BBB development, but also BBB breakdown in neurological diseases. Specifically, the Wnt/\u3b2-catenin, retinoic acid and sonic hedgehog pathways moved into the focus of BBB research. Moreover, angiopoietin/Tie2 signalling that is linked to angiogenic processes has gained attention in the BBB field. Blood vessels play an essential role in initiation and progression of many diseases, including inflammation outside the central nervous system (CNS). Therefore, the potential influence of CNS blood vessels in neurological diseases associated with BBB alterations or neuroinflammation has become a major focus of current research to understand their contribution to pathogenesis. Moreover, the BBB remains a major obstacle to pharmaceutical intervention in the CNS. The complications may either be expressed by inadequate therapeutic delivery like in brain tumours, or by poor delivery of the drug across the BBB and ineffective bioavailability. In this review, we initially describe the cellular and molecular components that contribute to the steady state of the healthy BBB. We then discuss BBB alterations in ischaemic stroke, primary and metastatic brain tumour, chronic inflammation and Alzheimer's disease. Throughout the review, we highlight common mechanisms of BBB abnormalities among these diseases, in particular the contribution of neuroinflammation to BBB dysfunction and disease progression, and emphasise unique aspects of BBB alteration in certain diseases such as brain tumours. Moreover, this review highlights novel strategies to monitor BBB function by non-invasive imaging techniques focussing on ischaemic stroke, as well as novel ways to modulate BBB permeability and function to promote treatment of brain tumours, inflammation and Alzheimer's disease. In conclusion, a deep understanding of signals that maintain the healthy BBB and promote fluctuations in BBB permeability in disease states will be key to elucidate disease mechanisms and to identify potential targets for diagnostics and therapeutic modulation of the BBB

    Fear processing is differentially affected by lateralized stimulation of carotid baroreceptors

    Get PDF
    Information processing, particularly of salient emotional stimuli, is influenced by cardiovascular afferent signals. Carotid baroreceptors signal the state of cardiovascular arousal to the brain, controlling blood pressure and heart rate via the baroreflex. Animal studies suggest a lateralization of this effect: Experimental stimulation of the right carotid sinus has a greater impact on heart rate when compared to left-sided stimulation. We tested, in humans, whether the processing of emotional information from faces was differentially affected by right versus left carotid afferents. To achieve so, we used an automated neck suction device to stimulate the carotid mechanoreceptors in the carotid sinus (parasympathetic pathway) synchronously with functional magnetic resonance imaging (fMRI) acquisition whilst participants were engaged in an emotional rating task of fearful and neutral faces. We showed that both right and left carotid stimulation influenced brain activity within opercular regions, although a stronger activation was observed within left insula during right stimulation compared to left stimulation. As regards the processing of fearful faces, right, but not left carotid stimulation attenuated the perceived intensity of fear, and (albeit to a lesser extent) enhanced intensity ratings of neutral faces. Mirroring the behavioural effects, there was a significant expression-by-stimulation interaction for right carotid stimulation only, when bilateral amygdala responses were attenuated to fear faces and amplified to neutral faces. Individual differences in basal heart rate variability (HRV) predicted the extent to which right carotid stimulation attenuated amygdala responses during fear processing. Our study provides unique evidence for lateralized viscerosensory effects on brain systems supporting emotional processing

    Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Get PDF
    Brain microvascular endothelial cells (BMECs) are an essential component of the blood-brain barrier (BBB) that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington's disease (HD), it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived BMECs (iBMEC) from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.American Heart Association (12PRE10410000)American Heart Association (CIRMTG2-01152)National Institutes of Health (U.S.) (NIHNS089076

    Effect of parasympathetic stimulation on brain activity during appraisal of fearful expressions

    Get PDF
    Autonomic nervous system activity is an important component of human emotion. Mental processes influence bodily physiology, which in turn feeds back to influence thoughts and feelings. Afferent cardiovascular signals from arterial baroreceptors in the carotid sinuses are processed within the brain and contribute to this two-way communication with the body. These carotid baroreceptors can be stimulated non-invasively by externally applying focal negative pressure bilaterally to the neck. In an experiment combining functional neuroimaging (fMRI) with carotid stimulation in healthy participants, we tested the hypothesis that manipulating afferent cardiovascular signals alters the central processing of emotional information (fearful and neutral facial expressions). Carotid stimulation, compared with sham stimulation, broadly attenuated activity across cortical and brainstem regions. Modulation of emotional processing was apparent as a significant expression-by-stimulation interaction within left amygdala, where responses during appraisal of fearful faces were selectively reduced by carotid stimulation. Moreover, activity reductions within insula, amygdala, and hippocampus correlated with the degree of stimulation-evoked change in the explicit emotional ratings of fearful faces. Across participants, individual differences in autonomic state (heart rate variability, a proxy measure of autonomic balance toward parasympathetic activity) predicted the extent to which carotid stimulation influenced neural (amygdala) responses during appraisal and subjective rating of fearful faces. Together our results provide mechanistic insight into the visceral component of emotion by identifying the neural substrates mediating cardiovascular influences on the processing of fear signals, potentially implicating central baroreflex mechanisms for anxiolytic treatment targets

    Possible pro-carcinogenic association of endotoxin on lung cancer among Shanghai women textile workers

    Get PDF
    Background: Endotoxin (lipopolysaccharide) is a widespread contaminant in many environmental settings. Since the 1970s, there has been generally consistent evidence indicating reduced risks for lung cancer associated with occupational endotoxin exposure. Methods: We updated a case–cohort study nested within a cohort of 267 400 female textile workers in Shanghai, China. We compared exposure histories of 1456 incident lung cancers cases diagnosed during 1989–2006 with those of a reference subcohort of 3022 workers who were free of lung cancer at the end of follow-up. We applied Cox proportional hazards modelling to estimate exposure–response trends, adjusted for age and smoking, for cumulative exposures lagged by 0, 10, and 20 years, and separately for time windows of ⩽15 and \u3e15 years since first exposure. Results: We observed no associations between cumulative exposure and lung cancer, irrespective of lag interval. In contrast, analyses by exposure time windows revealed modestly elevated, but not statistically significant relative risks (∼1.27) at the highest three exposure quintiles for exposures that occurred \u3e15 years since first exposure. Conclusions: The findings do not support a protective effect of endotoxin, but are suggestive of possible lung cancer promotion with increasing time since first exposure

    Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer

    Get PDF
    Studies of families who segregate BRCA2 mutations have found that men who carry disease-associated mutations have an increased risk of prostate cancer, particularly early-onset disease. A study of sporadic prostate cancer in the UK reported a prevalence of 2.3% for protein-truncating BRCA2 mutations among patients diagnosed at ages ⩽55 years, highlighting the potential importance of this gene in prostate cancer susceptibility. To examine the role of protein-truncating BRCA2 mutations in relation to early-onset prostate cancer in a US population, 290 population-based patients from King County, Washington, diagnosed at ages <55 years were screened for germline BRCA2 mutations. The coding regions, intron–exon boundaries, and potential regulatory elements of the BRCA2 gene were sequenced. Two distinct protein-truncating BRCA2 mutations were identified in exon 11 in two patients. Both cases were Caucasian, yielding a mutation prevalence of 0.78% (95% confidence interval (95%CI) 0.09–2.81%) and a relative risk (RR) of 7.8 (95%CI 1.8–9.4) for early-onset prostate cancer in white men carrying a protein-truncating BRCA2 mutation. Results suggest that protein-truncating BRCA2 mutations confer an elevated RR of early-onset prostate cancer. However, we estimate that <1% of early-onset prostate cancers in the general US Caucasian population can be attributed to these rare disease-associated BRCA2 mutations

    A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer

    Get PDF
    Although prostate cancer (PrCa) is one of the most common cancers in men in Western countries, little is known about the inherited factors that influence PrCa risk. On the basis of the fact that BRIP1/FANCJ interacts with BRCA1 and functions as a regulator of DNA double-strand break repair pathways, and that germline mutations within the BRIP1/FANCJ gene predispose to breast cancer, we chose this gene as a candidate for mutation screening in familial and young-onset PrCa cases. We identified a truncating mutation, R798X, in the BRIP1/FANCJ gene in 4 out of 2714 UK PrCa cases enriched for familial (2 out of 641; 0.3%) and young-onset cases (2 out of 2073; 0.1%). On screening 2045 controls from the UK population, we found one R798X sequence alteration (0.05%; odds ratio 2.4 (95% CI 0.25–23.4)). In addition, using our data from a genome-wide association study, we analysed 25 SNPs in the genomic region of the BRIP1/FANCJ gene. Two SNPs showed evidence of association with familial and young-onset PrCa (rs6504074; Ptrend=0.04 and rs8076727; Ptrend=0.01). These results suggest that truncating mutations in BRIP1/FANCJ might confer an increased risk of PrCa and common SNPs might also contribute to the alteration of risk, but larger case–control series will be required to confirm or refute this association

    Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis

    Get PDF
    BACKGROUND: The germline BRCA2 mutation is associated with increased prostate cancer (PrCa) risk. We have assessed survival in young PrCa cases with a germline mutation in BRCA2 and investigated loss of heterozygosity at BRCA2 in their tumours. METHODS: Two cohorts were compared: one was a group with young-onset PrCa, tested for germline BRCA2 mutations (6 of 263 cases had a germline BRAC2 mutation), and the second was a validation set consisting of a clinical set from Manchester of known BRCA2 mutuation carriers (15 cases) with PrCa. Survival data were compared with a control series of patients in a single clinic as determined by Kaplan-Meier estimates. Loss of heterozygosity was tested for in the DNA of tumour tissue of the young-onset group by typing four microsatellite markers that flanked the BRCA2 gene, followed by sequencing. RESULTS: Median survival of all PrCa cases with a germline BRCA2 mutation was shorter at 4.8 years than was survival in controls at 8.5 years (P = 0.002). Loss of heterozygosity was found in the majority of tumours of BRCA2 mutation carriers. Multivariate analysis confirmed that the poorer survival of PrCa in BRCA2 mutation carriers is associated with the germline BRCA2 mutation per se. CONCLUSION: BRCA2 germline mutation is an independent prognostic factor for survival in PrCa. Such patients should not be managed with active surveillance as they have more aggressive disease. British Journal of Cancer (2010) 103, 918-924. doi:10.1038/sj.bjc.6605822 www.bjcancer.com Published online 24 August 2010 (C) 2010 Cancer Research U
    • …
    corecore