8 research outputs found

    Predictors and outcomes of COVID-19 patients with hypoxemia in Lagos, Nigeria

    Get PDF
    Objectives: The coronavirus disease 2019 (COVID-19) pandemic is the current public health concern. Hypoxemia has been identified as an independent risk factor for mortality in COVID-19 patients regardless of age or sex. This study therefore aimed to assess the profile of COVID-19 patients with hypoxemia in Lagos, Nigeria and identify their associated socio-demographic and clinical risk factors, predictors, and outcomes.Materials and Methods: This was a retrospective cohort study in which data were extracted from medical records of real-time polymerase chain reaction confirmed COVID-19 positive patients admitted between April and October 2020. Data extracted included age, sex, comorbidities, disease category/classification, symptoms, lowest oxygen saturation (SPO2), and outcomes. Bivariate analysis was done to test associations between hypoxemia and other variables. Multivariate analysis was done to determine significant predictors of hypoxemia.Results: A total of 266 patients were included in the study; mean (SD) 49.80 (± 16.68) years. Hypoxemia (lowest SPO2 ≤ 90 in adults and < 92% in children) was found in 102 (38.3 %) of the cases. SPO2 of hypoxemic patients ranged from 33% to 90%, Mean ±SD of 77±13%. About half of the hypoxemic cases, 53 (52%) were ≥ 60 years and mostly male 70 (68.6%). Difficulty breathing was present in 56 (55%), while the common comorbidities were hypertension 86 (32.3%) and diabetes mellitus 47 (17.7%). Age ≥ 60, difficulty breathing, and fever were independent predictors of hypoxemia. Hypoxemia was significantly associated with death (X2-42.13; P < 0.001); odds ratio 14.5 (95% CI: 5.4–38.8).Conclusion: Hypoxemia occurred in 1 out of every 3 COVID-19 patients with poor prognosis. SPO2 monitoring and early presentation in hospital for those 60 years and above or with dyspnea may be essential for early identification and treatment of hypoxemia to reduce mortality

    APOE E4 is associated with impaired self-declared cognition but not disease risk or age of onset in Nigerians with Parkinson's disease

    Get PDF
    The relationship between APOE polymorphisms and Parkinson's disease (PD) in black Africans has not been previously investigated. We evaluated the association between APOE polymorphic variability and self-declared cognition in 1100 Nigerians with PD and 1097 age-matched healthy controls. Cognition in PD was assessed using the single item cognition question (item 1.1) of the MDS-UPDRS. APOE genotype and allele frequencies did not differ between PD and controls (p > 0.05). No allelic or genotypic association was observed between APOE and age at onset of PD. In PD, APOE ε4/ε4 conferred a two-fold risk of cognitive impairment compared to one or no ε4 (HR: 2.09 (95% CI: 1.13-3.89; p = 0.02)), while APOE ε2 was associated with modest protection against cognitive impairment (HR: 0.41 (95% CI 0.19-0.99, p = 0.02)). Of 773 PD with motor phenotype and APOE characterized, tremor-dominant (TD) phenotype predominated significantly in ε2 carriers (87/135, 64.4%) compared to 22.2% in persons with postural instability/gait difficulty (PIGD) (30/135) and 13.3% in indeterminate (ID) (18/135, 13.3%) (p = 0.037). Although the frequency of the TD phenotype was highest in homozygous ε2 carriers (85.7%), the distribution of motor phenotypes across the six genotypes did not differ significantly (p = 0.18). Altogether, our findings support previous studies in other ethnicities, implying a role for APOE ε4 and ε2 as risk and protective factors, respectively, for cognitive impairment in PD

    Prevalence of hypertension and blood pressure profile amongst urban-dwelling adults in Nigeria: a comparative analysis based on recent guideline recommendations

    No full text
    Abstract Background Hypertension is the major risk factor for cardiovascular diseases and prevalence rates are critical to understanding the burden and envisaging health service requirements and resource allocation. We aimed to provide an update of the current prevalence of hypertension and blood pressure profiles of adults in urban Nigeria. Methods Cross sectional population-based survey in Lagos, Nigeria. Participants were selected using stratified multistage sampling. Relevant sections of the World Health Organization STEPwise approach to chronic disease risk factor surveillance were utilized for data collection. Blood pressures were categorized based on both the current American College of Cardiology/American Heart Association (ACC/AHA) 2017 guidelines and the pre-existing Joint National Committee on Hypertension 7 (JNC7) (2003) categories. Results There were 5365 participants (51.8% female), age range of 16–92 years, and mean age ± SD 37.6 ± 13.1. The mean ± SD systolic and diastolic blood pressures were 126.8 ± 18.6 and 80.6 ± 13.2 respectively. There was significant correlation between both systolic and diastolic blood pressures and age (Pearson correlation 0.372 and 0.357 respectively and p = 0.000 in both instances). The prevalence of hypertension was 55.0% (3003) and 27.5% (1473) based on the ACC/AHA 2017 guideline and the JNC7 2003 guidelines respectively. Body mass index was positively correlated with systolic and diastolic BP (p = 0.000). Conclusions Over half of the adult population in this major Nigerian city are classified to have hypertension by the recent guideline. There is an urgent need to develop and implement strategies for primordial prevention of hypertension (and obesity) and to restructure our healthcare delivery systems to adequately cater for the current and emerging hypertensive population

    sj-docx-1-dhj-10.1177_20552076221150072 - Supplemental material for Telemedicine ready or not? A cross-sectional assessment of telemedicine maturity of federally funded tertiary health institutions in Nigeria

    No full text
    Supplemental material, sj-docx-1-dhj-10.1177_20552076221150072 for Telemedicine ready or not? A cross-sectional assessment of telemedicine maturity of federally funded tertiary health institutions in Nigeria by Tolulope F Olufunlayo, Oluwadamilola O Ojo, Obianuju B Ozoh, Osigwe P Agabi, Chuks R Opara, Funmilola T Taiwo and Olufemi A Fasanmade, Njideka U Okubadejo in Digital Health</p

    MAPT allele and haplotype frequencies in Nigerian Africans: Population distribution and association with Parkinson's disease risk and age at onset

    No full text
    INTRODUCTION: The association between MAPT and PD risk may be subject to ethnic variability even within populations of similar geographical origin. Data on MAPT haplotype frequencies, and its association with PD risk in black Africans are lacking. We aimed to determine the frequencies of MAPT haplotypes and their role as risk factors for PD and age at onset in Nigerians. METHODS: The haplotype and genotype frequencies of MAPT rs1052553 were analysed in 907 individuals with PD and 1022 age-matched healthy controls from the Nigeria Parkinson's Disease Research network cohort. Clinical data related to PD included age at study, age at onset (AAO), and disease duration. RESULTS: The frequency of the H1 haplotype was 98.7% in PD, and 99.1% in controls (p = 0.19). The H2 haplotype was present in - 1.3% of PD and 0.9% of controls (p = 0.24). The most frequent MAPT genotype was H1H1 (PD - 97.5%, controls - 98.2%). The H1 haplotype was not associated with PD risk after accounting for gender and AAO (Odds ratio for H1/H1 vs H1/H2 and H2/H2: 0.68 (95% CI:0.39-1.28); p = 0.23). CONCLUSIONS: Our findings support previous studies that report a low frequency of the MAPT H2 haplotype in black ancestry Africans but document its occurrence in Nigerians. The MAPT H1 haplotype was not associated with an increased risk or age at onset of PD in this cohort

    Identification of genetic risk loci and causal insights associated with Parkinson's disease in African and African admixed populations: a genome-wide association study

    No full text
    BACKGROUND: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson's disease in these underserved populations. METHODS: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson's disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson's Genetics Program, the International Parkinson's Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson's disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. FINDINGS: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson's disease (overall meta-analysis odds ratio for risk of Parkinson's disease 1·58 [95% CI 1·37-1·80], p=2·397 × 10-14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=-2·00 [SE=0·57], p=0·0005, for African ancestry; and β=-4·15 [0·58], p=0·015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. INTERPRETATION: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson's disease in African populations. This population-specific variant exerts substantial risk on Parkinson's disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson's disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson's disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson's disease. FUNDING: The Global Parkinson's Genetics Program, which is funded by the Aligning Science Across Parkinson's initiative, and The Michael J Fox Foundation for Parkinson's Research

    Identification of genetic risk loci and causal insights associated with Parkinson\u27s disease in African and African admixed populations: a genome-wide association study

    No full text
    \ua9 2023 Elsevier LtdBackground: An understanding of the genetic mechanisms underlying diseases in ancestrally diverse populations is an important step towards development of targeted treatments. Research in African and African admixed populations can enable mapping of complex traits, because of their genetic diversity, extensive population substructure, and distinct linkage disequilibrium patterns. We aimed to do a comprehensive genome-wide assessment in African and African admixed individuals to better understand the genetic architecture of Parkinson\u27s disease in these underserved populations. Methods: We performed a genome-wide association study (GWAS) in people of African and African admixed ancestry with and without Parkinson\u27s disease. Individuals were included from several cohorts that were available as a part of the Global Parkinson\u27s Genetics Program, the International Parkinson\u27s Disease Genomics Consortium Africa, and 23andMe. A diagnosis of Parkinson\u27s disease was confirmed clinically by a movement disorder specialist for every individual in each cohort, except for 23andMe, in which it was self-reported based on clinical diagnosis. We characterised ancestry-specific risk, differential haplotype structure and admixture, coding and structural genetic variation, and enzymatic activity. Findings: We included 197 918 individuals (1488 cases and 196 430 controls) in our genome-wide analysis. We identified a novel common risk factor for Parkinson\u27s disease (overall meta-analysis odds ratio for risk of Parkinson\u27s disease 1\ub758 [95% CI 1\ub737–1\ub780], p=2\ub7397 7 10−14) and age at onset at the GBA1 locus, rs3115534-G (age at onset β=–2\ub700 [SE=0\ub757], p=0\ub70005, for African ancestry; and β=–4\ub715 [0\ub758], p=0\ub7015, for African admixed ancestry), which was rare in non-African or non-African admixed populations. Downstream short-read and long-read whole-genome sequencing analyses did not reveal any coding or structural variant underlying the GWAS signal. The identified signal seems to be associated with decreased glucocerebrosidase activity. Interpretation: Our study identified a novel genetic risk factor in GBA1 in people of African ancestry, which has not been seen in European populations, and it could be a major mechanistic basis of Parkinson\u27s disease in African populations. This population-specific variant exerts substantial risk on Parkinson\u27s disease as compared with common variation identified through GWAS and it was found to be present in 39% of the cases assessed in this study. This finding highlights the importance of understanding ancestry-specific genetic risk in complex diseases, a particularly crucial point as the Parkinson\u27s disease field moves towards targeted treatments in clinical trials. The distinctive genetics of African populations highlights the need for equitable inclusion of ancestrally diverse groups in future trials, which will be a valuable step towards gaining insights into novel genetic determinants underlying the causes of Parkinson\u27s disease. This finding opens new avenues towards RNA-based and other therapeutic strategies aimed at reducing lifetime risk of Parkinson\u27s disease. Funding: The Global Parkinson\u27s Genetics Program, which is funded by the Aligning Science Across Parkinson\u27s initiative, and The Michael J Fox Foundation for Parkinson\u27s Research
    corecore