399 research outputs found
How mobile technologies support business models: Case study-based empirical analysis
[Otros] Les technologies mobiles ont poussé la connectivité des systÚmes informatiques
Ă la limite, permettant aux personnes et aux objets de se connecter les uns aux
autres à tout moment. La quantité d'informations dont disposent les
entreprises a augmenté de façon exponentielle, en grande partie grùce à la
géolocalisation et à la vaste gamme de capteurs intégrés dans les appareils
mobiles. Ces informations peuvent ĂȘtre utilisĂ©es pour amĂ©liorer les activitĂ©s
et les processus métier, mais également pour créer de nouveaux modÚles
d'affaires. En nous concentrant sur les modĂšles d'affaires, nous analysons les
technologies mobiles comme catalyseurs des changements d'activité. Nous
examinons les caractéristiques distinctives des technologies mobiles et examinons comment celles¿ci peuvent supporter différentes fonctions de
l'entreprise. Une étude basée sur une analyse qualitative comparée d'ensemble
floue (fsQCA) de 30 cas, de différents secteurs, a permis d'identifier les facteurs
de succĂšs de la technologie mobile pour diffĂ©rentes activitĂ©s du cĆur de mĂ©tier
des firmes. Les résultats montrent que plusieurs combinaisons de technologie
mobile procurent un avantage concurrentiel lorsqu'elles correspondent au
modĂšle d'affaire.[EN] Mobile technologies have pushed the connectivity of IT systems to the limit, enabling people and things to connect to one another at all times. The amount of information companies have at their disposal has increased exponentially, thanks largely to geolocation and to the vast array of sensors that have been integrated into mobile devices. This information can be used to enhance business activities and processes, but it can also be used to create new business models. Focusing on business models, we analyze mobile technologies as enablers of activity changes. We consider the differentiating characteristics of mobile technologies and examine how these can support different business functions. A study based on fuzzy-set qualitative comparative analysis (fsQCA) of 30 cases across different industries allows us to identify mobile technology success factors for different core activities. The results show that several combinations of mobile technology initiatives provide a competitive advantage when these initiatives match the business model.Peris-Ortiz, M.; Devece Carañana, CA.; Hikkerova, L. (2020). How mobile technologies support business models: Case study-based empirical analysis. Canadian Journal of Administrative Sciences / Revue Canadienne des Sciences de l Administration. 37(1):95-105. https://doi.org/10.1002/cjas.1550S95105371Al-Debei, M. M., & Avison, D. (2010). Developing a unified framework of the business model concept. European Journal of Information Systems, 19(3), 359-376. doi:10.1057/ejis.2010.21Arlotto, J., Sahut, J.-M., & Teulon, F. (2011). Le concept de Business Model au travers de la littĂ©rature. Gestion 2000, 28(4), 33. doi:10.3917/g2000.284.0033Clemons, E. K. (2009). Business Models for Monetizing Internet Applications and Web Sites: Experience, Theory, and Predictions. Journal of Management Information Systems, 26(2), 15-41. doi:10.2753/mis0742-1222260202Comberg, C., & Velamuri, V. K. (2017). The introduction of a competing business model: the case of eBay. International Journal of Technology Management, 73(1/2/3), 39. doi:10.1504/ijtm.2017.082356Coursaris C. Hassanein H. &Head M. (2006).Mobile technologies and the value chain: Participants activities and value creation(p. 8) sInternational Conference on Mobile Business Copenhagen Denmark.Ehrenhard, M., Wijnhoven, F., van den Broek, T., & Zinck Stagno, M. (2017). Unlocking how start-ups create business value with mobile applications: Development of an App-enabled Business Innovation Cycle. Technological Forecasting and Social Change, 115, 26-36. doi:10.1016/j.techfore.2016.09.011European Parliament(2015).The Internet of things: Opportunities and challenges. Retrieved fromwww.europarl.europa.eu/RegData/etudes/BRIE/2015/557012/EPRS_BRI(2015)557012_EN.pdfGurrin, C., Smeaton, A. F., & Doherty, A. R. (2014). LifeLogging: Personal Big Data. Foundations and TrendsÂź in Information Retrieval, 8(1), 1-125. doi:10.1561/1500000033HĂŒbner, A. H., Kuhn, H., & Wollenburg, J. (2016). Last mile fulfilment and distribution in omni-channel grocery retailing: a strategic planning framework. International Journal of Retail & Distribution Management, 44(3). doi:10.1108/ijrdm-11-2014-0154Kauffman, R. J., & Wang, B. (2008). Tuning into the digital channel: evaluating business model characteristics for Internet firm survival. Information Technology and Management, 9(3), 215-232. doi:10.1007/s10799-008-0040-3Liang, T., Huang, C., Yeh, Y., & Lin, B. (2007). Adoption of mobile technology in business: a fitâviability model. Industrial Management & Data Systems, 107(8), 1154-1169. doi:10.1108/02635570710822796Martinez-Simarro, D., Devece, C., & Llopis-Albert, C. (2015). How information systems strategy moderates the relationship between business strategy and performance. Journal of Business Research, 68(7), 1592-1594. doi:10.1016/j.jbusres.2015.01.057Mello P.A.(2012).A critical review of applications in QCA and fuzzyâset analysis and a âtoolbox' of proven solutions to frequently encountered problems APSA Annual Meeting Paper. Retrieved fromhttps://ssrn.com/abstract=2105539Melville, Kraemer, & Gurbaxani. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283. doi:10.2307/25148636Ngai, E. W. T., & Gunasekaran, A. (2007). Mobile commerce: Strategies, technologies, and applications. Decision Support Systems, 43(1), 1-2. doi:10.1016/j.dss.2005.05.002Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (2016). Internet of Things in the 5G Era: Enablers, Architecture, and Business Models. IEEE Journal on Selected Areas in Communications, 34(3), 510-527. doi:10.1109/jsac.2016.2525418Pateli, A. G., & Giaglis, G. M. (2005). Technology innovationâinduced business model change: a contingency approach. Journal of Organizational Change Management, 18(2), 167-183. doi:10.1108/09534810510589589Piccoli, & Ives. (2005). Review: IT-Dependent Strategic Initiatives and Sustained Competitive Advantage: A Review and Synthesis of the Literature. MIS Quarterly, 29(4), 747. doi:10.2307/25148708Porter M. E.(2001).Strategy and the Internet. Harvard Business Review March 63â78.Ragin C. C.(2008).User's Guide to FuzzyâSet/Qualitative Comparative Analysis. Working Paper University of Arizona Arizona.Ray, G., Barney, J. B., & Muhanna, W. A. (2003). Capabilities, business processes, and competitive advantage: choosing the dependent variable in empirical tests of the resource-based view. Strategic Management Journal, 25(1), 23-37. doi:10.1002/smj.366Richter, C., Kraus, S., & SyrjĂ€, P. (2015). The shareconomy as a precursor for digital entrepreneurship business models. International Journal of Entrepreneurship and Small Business, 25(1), 18. doi:10.1504/ijesb.2015.068773Schneider, M. R., Schulze-Bentrop, C., & Paunescu, M. (2009). Mapping the institutional capital of high-tech firms: A fuzzy-set analysis of capitalist variety and export performance. Journal of International Business Studies, 41(2), 246-266. doi:10.1057/jibs.2009.36Sheng, H., Nah, F. F.-H., & Siau, K. (2005). Strategic implications of mobile technology: A case study using Value-Focused Thinking. The Journal of Strategic Information Systems, 14(3), 269-290. doi:10.1016/j.jsis.2005.07.004Sorescu, A. (2017). Data-Driven Business Model Innovation. Journal of Product Innovation Management, 34(5), 691-696. doi:10.1111/jpim.12398Tallon, P. P. (2007). A Process-Oriented Perspective on the Alignment of Information Technology and Business Strategy. Journal of Management Information Systems, 24(3), 227-268. doi:10.2753/mis0742-1222240308Tjaden, G. S. (1996). Measuring the information age business. Technology Analysis & Strategic Management, 8(3), 233-246. doi:10.1080/09537329608524248Vilmos A. Kovacs K. &Kutor L. (2007).NFC applications and business model of the ecosystem(pp.1469â1473) 16th IST Mobile and Wireless Communications Summit Budapest Hungary. doi:https://doi.org/10.1109/ISTMWC.2007.4299324.Wirtz, B. W., Schilke, O., & Ullrich, S. (2010). Strategic Development of Business Models. Long Range Planning, 43(2-3), 272-290. doi:10.1016/j.lrp.2010.01.005Woodbridge R.(2010).9 mobile business models that you can use right now to generate revenue. Tether. Retrieved February 2 2019 fromhttp://untether.tv/2010/8âmobileâbusinessâmodelsâthatâyouâcanâuseârightânowâtoâgenerateârevenue/Woodside, A. G., & Zhang, M. (2011). Identifying X-Consumers Using Causal Recipes: «Whales» and «Jumbo Shrimps» Casino Gamblers. Journal of Gambling Studies, 28(1), 13-26. doi:10.1007/s10899-011-9241-5Woodside, A. G. (2013). Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. Journal of Business Research, 66(4), 463-472. doi:10.1016/j.jbusres.2012.12.02
РаЎОаŃĐžĐŸĐœĐœŃĐč ĐșĐŸĐœŃŃĐŸĐ»Ń ĐČ ŃĐŸĐČŃĐ”ĐŒĐ”ĐœĐœŃŃ ĐżŃĐŸŃĐ”ŃŃĐ°Ń ĐœĐ”ŃŃĐ”ĐŽĐŸĐ±ŃŃĐž
Đ Đ°ŃŃĐŒĐŸŃŃĐ”ĐœŃ ĐČĐŸĐżŃĐŸŃŃ ŃĐ°ĐŽĐžĐŸŃĐșĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐŸĐłĐŸ ĐșĐŸĐœŃŃĐŸĐ»Ń ĐœĐ° ĐœĐ”ŃŃĐ”ĐŽĐŸĐ±ŃĐČĐ°ŃŃĐžŃ
ĐżŃДЎпŃĐžŃŃĐžŃŃ
. ĐĐŸĐșĐ°Đ·Đ°ĐœĐ° ĐČĐŸĐ·ĐŒĐŸĐ¶ĐœĐŸŃŃŃ ĐžŃĐżĐŸĐ»ŃĐ·ĐŸĐČĐ°ĐœĐžŃ ĐżŃĐŸĐłŃĐ°ĐŒĐŒĐœŃŃ
ĐżŃĐŸĐŽŃĐșŃĐŸĐČ ĐŽĐ»Ń ĐŸĐ±Đ”ŃпДŃĐ”ĐœĐžŃ ĐșĐŸĐŒĐżĐ»Đ”ĐșŃĐœĐŸĐč ĐŸŃĐ”ĐœĐșĐž ŃаЎОаŃĐžĐŸĐœĐœĐŸĐč ĐŸĐ±ŃŃĐ°ĐœĐŸĐČĐșĐž ĐœĐ° ĐŸĐ±ŃĐ”ĐșŃĐ°Ń
Đž ŃĐ”ŃŃĐžŃĐŸŃĐžŃŃ
ĐœĐ”ŃŃĐ”ĐŽĐŸĐ±ŃĐČĐ°ŃŃĐžŃ
ĐżŃДЎпŃĐžŃŃĐžĐč. ĐŃĐČĐ”ŃĐ”ĐœŃ ĐŸŃĐœĐŸĐČĐœŃĐ” Đ°ŃпДĐșŃŃ ĐČĐ·Đ°ĐžĐŒĐŸĐŽĐ”ĐčŃŃĐČĐžŃ ĐœĐ°ŃŃĐœĐŸ-ĐžŃŃĐ»Đ”ĐŽĐŸĐČĐ°ŃДлŃŃĐșĐžŃ
Đ»Đ°Đ±ĐŸŃĐ°ŃĐŸŃĐžĐč Ń ĐŠĐ”ĐœŃŃĐ°ĐŒĐž ŃĐșĐŸĐ»ĐŸĐłĐžŃĐ”ŃĐșĐŸĐč Đ±Đ”Đ·ĐŸĐżĐ°ŃĐœĐŸŃŃĐž ĐżŃДЎпŃĐžŃŃĐžĐč Đž ĐžŃ
Đ·ĐœĐ°ŃĐ”ĐœĐžĐ” ĐŽĐ»Ń ŃŃŃĐ”ĐșŃĐžĐČĐœĐŸĐłĐŸ ŃĐ”ŃŃŃŃĐŸŃбДŃĐ”Đ¶Đ”ĐœĐžŃ ĐČ ŃĐŸĐČŃĐ”ĐŒĐ”ĐœĐœŃŃ
ĐżŃĐŸŃĐ”ŃŃĐ°Ń
ĐœĐ”ŃŃĐ”ĐŽĐŸĐ±ŃŃĐž
Entrepreneurial Value Creation in the Cloud: Exploring the Value Dimensions of the Business Model
Part 5: Research in ProgressInternational audienceCloud computingâs potential in creating and capturing business value is being increasingly acknowledged. Existing empirical studies of business value in cloud computing have focused on user organizations and large enterprises with legacy systems. Acknowledging the innovation opportunities created by cloud, we study entrepreneurial cloud service providers. In this paper we conduct an exploratory study of six cloud-based start-up firms in India. We examine the value dimensions of the business model concept to study entrepreneurial value creation in the cloud. We find that cloud is a key resource in the structural configuration of their business model and enables the value proposition
Generic Business Model Types for Enterprise Mashup Intermediaries
The huge demand for situational and ad-hoc applications desired by the mass of business end users led to a new kind of Web applications, well-known as Enterprise Mashups. Users with no or limited programming skills are empowered to leverage in a collaborative manner existing Mashup components by combining and reusing company internal and external resources within minutes to new value added applications. Thereby, Enterprise Mashup environments interact as intermediaries to match the supply of providers and demand of consumers. By following the design science approach, we propose an interaction phase model artefact based on market transaction phases to structure required intermediary features. By means of five case studies, we demonstrate the application of the designed model and identify three generic business model types for Enterprise Mashups intermediaries (directory, broker, and marketplace). So far, intermediaries following a real marketplace business model donât exist in context of Enterprise Mashups and require further research for this emerging paradigm
A terminal assessment of stages theory : introducing a dynamic states approach to entrepreneurship
Stages of Growth models were the most frequent theoretical approach to understanding entrepreneurial business growth from 1962 to 2006; they built on the growth imperative and developmental models of that time. An analysis of the universe of such models (N=104) published in the management literature shows no consensus on basic constructs of the approach, nor is there any empirical confirmations of stages theory. However, by changing two propositions of the stages models, a new dynamic states approach is derived. The dynamic states approach has far greater explanatory power than its precursor, and is compatible with leading edge research in entrepreneurship
The open innovation research landscape: established perspectives and emerging themes across different levels of analysis
This paper provides an overview of the main perspectives and themes emerging in research on open innovation (OI). The paper is the result of a collaborative process among several OI scholars â having a common basis in the recurrent Professional Development Workshop on âResearching Open Innovationâ at the Annual Meeting of the Academy of Management. In this paper, we present opportunities for future research on OI, organised at different levels of analysis. We discuss some of the contingencies at these different levels, and argue that future research needs to study OI â originally an organisational-level phenomenon â across multiple levels of analysis. While our integrative framework allows comparing, contrasting and integrating various perspectives at different levels of analysis, further theorising will be needed to advance OI research. On this basis, we propose some new research categories as well as questions for future research â particularly those that span across research domains that have so far developed in isolation
Technological Revolution, Sustainability and Development in Africa: Overview, Emerging Issues and Challenges
The paper examines the silent technological revolution in subâSaharan Africa focusing on emerging issues and challenges. In view of the centrality of technology diffusion in fostering local innovations and economic development in developing countries, it is surprising that our understanding of the challenges and opportunities in scalingâup technologies remains limited. This paper capitalises on the ongoing silent technological revolution in subâSaharan Africa to present an overview of how new technologies have been adopted and utilised to achieve sustainability. The study identified a host of factors such as weak regulatory enforcement systems, lack of financial credit availability, and limited banking services, which have created conditions for technological innovations such as mobile phoneâbased banking, mPedigree, âcardiopad,â and MâPEPEA to emerge. The public policy implications and directions for future research are identified and examined
- âŠ