7 research outputs found

    Impact of Rescaling Approaches in Simple Fusion of Soil Moisture Products

    Get PDF
    In this study, the impact of various rescaling approaches in the framework of data fusion is explored. Four different soil moisture products (Advanced Scatterometer; Advanced Microwave Scanning Radiometer for EOS, AMSR-E; Antecedent Precipitation Index; and Global Land Data Assimilation System-NOAH) are fused. The systematic differences between products are removed before the fusion utilizing various rescaling approaches focusing on different methods (regression, variance/cumulative distribution function (CDF) matching, multivariate adaptive regression splines, and support vector machines based), stationarity assumptions (constant or time-varying rescaling coefficients), and time-frequency techniques (periodic or nonperiodic high- and low-frequency components). Given that statistical descriptions (e.g., standard deviation and correlation coefficient) of reference data sets are utilized in rescaling approaches, the precision of the selected reference data set also impacts the final fused product precision. Experiments are validated over 542 soil moisture monitoring sites selected from the International Soil Moisture Network data sets between 2007 and 2011. Overall, results highlight the importance of reference data set selection-particularly that a more precise reference product yields a higher precision fused soil moisture product. This conclusion is sensitive neither to the number of fused products nor the rescaling procedure. Among rescaling approaches, the precision of fused products is most affected by the choice of rescaling stationary assumption and time-frequency decomposition technique. Variations in rescaling methods have only a small impact on the precision of pair fused products. In contrast, utilizing a time-varying stationary assumption and nonperiodic decomposition technique produces correlation improvements of 0.07 [-] and 0.02 [-], respectively, versus the other widely implemented rescaling approaches

    The added utility of nonlinear methods compared to linear methods in rescaling soil moisture products

    Get PDF
    In this study, the added utility of nonlinear rescaling methods relative to linear methods in the framework of creating a homogenous soil moisture time series has been explored. The performances of 31 linear and nonlinear rescaling methods are evaluated by rescaling the Land Parameter Retrieval Model (LPRM) soil moisture datasets to station-basedwatershed average datasets obtained over four United States Department of Agriculture (USDA) Agricultural Research Service (ARS) watersheds. The linear methods include first-order linear regression, multiple linear regression, and multivariate adaptive regression splines (MARS), whereas the nonlinear methods include cumulative distribution function matching (CDF), artificial neural networks (ANN), support vector machines (SVM), Genetic Programming (GEN), and copula methods. MARS, GEN, SVM, ANN, and the copula methods are also implemented to utilize lagged observations to rescale the datasets. The results of a total of 31 different methods show that the nonlinear methods improve the correlation and error statistics of the rescaled product compared to the linear methods. In general, the method that yielded the best results using training data improved the validation correlations, on average, by 0.063, whereas ELMAN ANN and GEN, using lagged observations methods, yielded correlation improvements of 0.052 and 0.048, respectively. The lagged observations improved the correlations when they were incorporated into rescaling equations in linear and nonlinear fashions, with the nonlinear methods (particularly SVM and GEN but not ANN and copula) benefitting from these lagged observations more than the linear methods. The overall results show that a large majority of the similarities between the LPRM and watershed average datasets are due to linear relations; however, nonlinear relations clearly exist, and the use of nonlinear rescaling methods clearly improves the accuracy of the rescaled product

    Development of Simulation-Optimization Model (MUSIC-GA) for Urban Stormwater Management

    No full text
    Urban development leads to replacement of impervious surfaces with pervious surfaces, vegetation and production of various environmental pollutants. In addition, this phenomenon has increased the devastating effects of urban stormwater and has exacerbated the water quality of many freshwater resources (surface and underground) throughout the world. To alleviate this condition, new models of urban stormwater systems, including Water Sensitive Urban Design (WSUD) as well as its software package, MUSIC, have been developed. Regarding the water sensitive urban design, some urban stormwater treatment devices have been proposed and implemented to alleviate the effects of land use changes and improve the quality of downstream water. Although this new models provide cost-effective urban stormwater management methods, it is very challenging to determine an optimal mixture of various treatment devices and minimize the cost of urban stormwater control systems in this regard. Traditionally, the optimum and cost-effective urban stormwater treatment systems have been developed using simulation models such as MUSIC on the basis of trial and error. It should be noted that the latter models require considerable time to get close to an optimal solution. In this study, a simulation-optimization model of urban stormwater management system has been developed using a combination of MUSIC simulation model and Genetic Algorithm thereof. The simulation-optimization model (MUSIC-GA) greatly reduces the computation time and facilitates direct access to absolute optimal solution. The results of a case study on the application of the developed model in Australia have also shown that there have been some desirable convergences between the results of the simulation-optimization model and absolute optimal solution over various implementations of the model

    Comparative Evaluation of Microwave L-Band VOD and Optical NDVI for Agriculture Drought Detection over Central Europe

    Get PDF
    Agricultural droughts impose many economic and social losses on various communities. Most of the effective tools developed for agricultural drought assessment are based on vegetation indices (VIs). The aim of this study is to compare the response of two commonly used VIs to meteorological droughts-Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and Soil Moisture and Ocean Salinity (SMOS) vegetation optical depth (VOD). For this purpose, meteorological droughts are calculated by using a standardized precipitation index over more than 24,000 pixels at 0.25 degrees x 0.25 degrees spatial resolution located in central Europe. Then, to evaluate the capability of VIs in the detection of agricultural droughts, the average values of VIs anomalies during dry and wet periods obtained from meteorological droughts are statistically compared to each other. Additionally, to assess the response time of VIs to meteorological droughts, a time lag of one to six months is applied to the anomaly time series of VIs during their comparison. Results show that over 35% of the considered pixels NDVI, over 22% of VOD, and over 8% of both VIs anomalies have a significant response to drought events, while the significance level of these differences and the response time of VIs vary with different land use and climate conditions

    Improving performance of index insurance using crop models and phenological monitoring

    No full text
    Extreme weather events pose significant risks to the livelihoods of smallholder farmers across Asia and Africa. Weather index-based insurance provides a potential solution to mitigate risks caused by crop failures, providing farmers with a payout in the event of a poor harvest. It also reduces costs relative to traditional indemnity insurance by eliminating the need for resource-intensive, in-situ assessment of losses. However, one challenge associated with weather index-based insurance is basis risk – where the payouts triggered by the index do not match actual crop losses. High levels of basis risk are observed across many existing weather index-based insurance products, and represent a key constraint to successful upscaling. A common feature of existing weather index-based insurance contracts is that payouts are triggered based on weather indices defined over fixed calendar periods, specified to capture the typical duration of the crop growing season or key phenological stages in a given agricultural system. In reality, however, the timing of a crop’s sensitivity to weather often varies significantly between individual plots or farmers due to differences in management practices (e.g., sowing date, variety choice) and meteorological conditions (e.g., temperature and precipitation) that affect rates of crop development. Failure to consider this heterogeneity is potentially a significant driver of basis risk, and suggests that opportunities may exist to improve the quality of index insurance by designing phenology-specific insurance contracts.In this study, we evaluate the impacts of improved monitoring of crop phenology on the performance of index-based crop yield models through a range of synthetic model-based simulated experiments for wheat and rice production in Haryana and Odisha states in India. We use a calibrated process-based crop simulation model (APSIM) to evaluate yields for a range of potential weather realizations and agricultural management practices typically observed in our case study regions. Subsequently, we develop non-linear statistical (i.e. index-based) models using non-parametric regression techniques (Multivariate adaptive regression splines; MARS) to reproduce APSIM-simulated yields as a function of rainfall and temperature conditions during key sensitive crop growth stages.Our results show that by considering field-level heterogeneity in crop phenology and development, it is possible to reliably estimate (>0.8 r-squared) wheat and rice yields. In contrast, model performance deteriorates significantly when variability in growth stage between individual simulated fields is not considered or when weather predictors are aggregated over the entire growing season as opposed to specific growth stages. These findings show that considering crop phenology can dramatically improve the performance of statistical yield models and, in turn, the accuracy of an index-based insurance product. Nevertheless, reductions in basis risk must also be balanced against the increasing complexity and implementation costs of these potential products in smallholder environments

    Climate change impact assessment on mild and extreme drought events using copulas over Ankara, Turkey

    No full text
    Climate change, one of the major environmental challenges facing mankind, has caused intermittent droughts in many regions resulting in reduced water resources. This study investigated the impact of climate change on the characteristics (occurrence, duration, and severity) of meteorological drought across Ankara, Turkey. To this end, the observed monthly rainfall series from five meteorology stations scattered across Ankara Province as well as dynamically downscaled outputs of three global climate models that run under RCP 4.5 and RCP 8.5 scenarios was used to attain the well-known SPI series during the reference period of 1986-2018 and the future period of 2018-2050, respectively. Analyzing drought features in two time periods generally indicated the higher probability of occurrence of drought in the future period. The results showed that the duration of mild droughts may increase, and extreme droughts will occur with longer durations and larger severities. Moreover, joint return period analysis through different copula functions revealed that the return period of mild droughts will remain the same in the near future, while it declines by 12% over extreme droughts in the near future

    Evaluation of Remotely-Sensed and Model-Based Soil Moisture Products According to Different Soil Type, Vegetation Cover and Climate Regime Using Station-Based Observations over Turkey

    Get PDF
    This study evaluates the performance of widely-used remotely sensed- and model-based soil moisture products, including: The Advanced Scatterometer (ASCAT), the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the European Space Agency Climate Change Initiative (ESA-CCI), the Antecedent Precipitation Index (API), and the Global Land Data Assimilation System (GLDAS-NOAH). Evaluations are performed between 2008 and 2011 against the calibrated station-based soil moisture observations collected by the General Directorate of Meteorology of Turkey. The calibration of soil moisture observing sensors with respect to the soil type, correction of the soil moisture for the soil temperature, and the quality control of the collected measurements are performed prior to the evaluation of the products. Evaluation of remotely sensed- and model-based soil moisture products is performed considering different characteristics of the time series (i.e., seasonality and anomaly components) and the study region (i.e., soil type, vegetation cover, soil wetness and climate regime). The systematic bias between soil moisture products and in situ measurements is eliminated by using a linear rescaling method. Correlations between the soil moisture products and the in situ observations vary between 0.57 and 0.87, while the root mean square errors of the products versus the in situ observations vary between 0.028 and 0.043 m(3) m(-3). Overall, according to the correlation and root mean square error values obtained in all evaluation categories, NOAH and ESA-CCI soil moisture products perform better than all the other model- and remotely sensed-based soil moisture products. These results are valid for the entire study time period and all of the sub-categories under soil type, vegetation cover, soil wetness and climate regime
    corecore