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Abstract 11 

In this study, the added utility of nonlinear rescaling methods relative to linear methods in the 12 

framework of creating a homogenous soil moisture time series has been explored. The 13 

performances of 31 linear and nonlinear rescaling methods are evaluated by rescaling the Land 14 

Parameter Retrieval Model (LPRM) soil moisture datasets to station-based watershed average 15 

datasets obtained over four United States Department of Agriculture (USDA) Agricultural 16 

Research Service (ARS) watersheds. The linear methods include first-order linear regression, 17 

multiple linear regression, and multivariate adaptive regression splines (MARS), whereas the 18 

nonlinear methods include cumulative distribution function matching (CDF), artificial neural 19 

networks (ANN), support vector machines (SVM), Genetic Programming (GEN), and copula 20 

methods. MARS, GEN, SVM, ANN, and the copula methods are also implemented to utilize 21 

lagged observations to rescale the datasets. The results of a total of 31 different methods show that 22 

the nonlinear methods improve the correlation and error statistics of the rescaled product compared 23 
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to the linear methods. In general, the method that yielded the best results using training data 24 

improved the validation correlations, on average, by 0.063, whereas ELMAN ANN and GEN, 25 

using lagged observations methods, yielded correlation improvements of 0.052 and 0.048, 26 

respectively. The lagged observations improved the correlations when they were incorporated into 27 

rescaling equations in linear and nonlinear fashions, with the nonlinear methods (particularly SVM 28 

and GEN but not ANN and copula) benefitting from these lagged observations more than the linear 29 

methods. The overall results show that a large majority of the similarities between the LPRM and 30 

watershed average datasets are due to linear relations; however, nonlinear relations clearly exist, 31 

and the use of nonlinear rescaling methods clearly improves the accuracy of the rescaled product. 32 

Key Words: Soil moisture, rescaling, linear, nonlinear, remote sensing 33 

 34 

1. Introduction 35 

Soil moisture is one of the key variables in many geophysical science applications (e.g., 36 

those dealing with climate, hydrology, water resources, or agriculture; Lawrence & Hornberger, 37 

2007) owing to its memory (Han et al., 2014) and role in water and energy exchange between land 38 

and the atmosphere (Koster et al., 2004). Hence, an accurate estimation of soil moisture is critical 39 

for many applications (Dorigo et al., 2012). Different soil moisture time series for the same 40 

location and same time period can be retrieved via different platforms (e.g., hydrological models, 41 

in situ observations, and remote sensing). It is often desirable to merge these different datasets to 42 

obtain more accurate estimates (Anderson et al., 2012; Yilmaz et al., 2012). However, due to the 43 

limitations of these platforms (e.g., satellites can monitor only the top few centimeters at relatively 44 

coarse resolutions, points in in situ observations have spatial representativeness limitations, and 45 

models have different parameterizations (Koster et al., 2009)), these datasets have systematic 46 



 

 

differences in their horizontal, temporal, and/or vertical supports (Dirmeyer et al., 2004; Koster et 47 

al., 2009). As a result, soil moisture values obtained from various platforms often need to be 48 

rescaled before they can be meaningfully validated, merged, or used in different applications 49 

(Dirmeyer et al., 2004; Reichle & Koster, 2005; Reichle et al., 2008; Yilmaz and Crow, 2013; Yin 50 

et al., 2014; Su and Ryu, 2015). 51 

Many different methods are proposed to handle these systematic differences between soil 52 

moisture products, where an unscaled original product Y is rescaled to the space of a reference 53 

product X. However, the performances of these methods depend on many factors, including 54 

sampling errors, the degree to which the rescaling methods’ underlying assumptions are met, and 55 

the goal of the rescaling efforts. Examples of such goals include minimizing the variability of the 56 

difference between the rescaled product (Y∗) and X via a first-order linear regression (REG1), 57 

matching the total variability of a dataset Y to an arbitrary reference dataset X (VAR), matching 58 

the cumulative distribution function (cdf), and matching only the signal variability of Y to that of 59 

X (here, “signal” refers to the true variability of a dataset, where the total variability is composed 60 

of true signal variability and noise variability components) using triple collocation analysis (TCA: 61 

Hain et al., 2011; Miralles et al., 2011; Parinussa et al., 2011; Scipal et al., 2008; Stoffelen, 1998; 62 

Zwieback et al., 2012).  63 

Once the rescaling method is selected for implementation in a specific application, this 64 

method can be implemented using different strategies (Yilmaz et al., 2016). For example, a dataset 65 

can be rescaled by using a single coefficient for the entire time series by using separate rescaling 66 

coefficients for each month or separate coefficients for the anomaly and seasonality components. 67 

Such rescaling strategies affect the accuracy statistics of Y∗, even though, by definition, a particular 68 

rescaling method is selected to be the optimum method for a particular application (here, the 69 



 

 

optimum method refers to the method that results in the best statistic of interest, among other 70 

methods). To give a more specific example, consider the relative accuracies of X and Y or the 71 

differences between the signal-variability-to-noise-variability ratio (Gruber et al., 2016), for X 72 

(SNRX) and Y (SNRY). In general, the relative variations of SNRX and SNRY are expected to impact 73 

the overall performance of the rescaling methods through the use of various rescaling strategies 74 

(Yilmaz et al., 2016) for many applications (e.g., the creation of homogenous time series and data 75 

assimilation). For example, if SNRX >> SNRY, it is better to rescale Y strongly to X (e.g., by 76 

rescaling the seasonality and anomaly components separately using two different rescaling 77 

coefficients or rescaling datasets for each month separately using 12 different rescaling 78 

coefficients). By contrast, if SNRY > SNRX, it is better to weakly rescale Y to X (e.g., by rescaling 79 

the entire time series at once and using a single rescaling coefficient). Hence, the performance of 80 

any rescaling method (e.g., REG1, VAR, TCA, and CDF) could vary depending on the 81 

aggressiveness with which the rescaling strategy is implemented (e.g., weak or strong; Yilmaz et 82 

al., 2016). 83 

Both the rescaling method selection (Yilmaz & Crow, 2013) and degree of aggressiveness 84 

implemented (Yilmaz et al., 2016) can impact the optimality of the Y∗ statistics. Here, the question 85 

arises whether the inter-comparisons of rescaling methods make sense, without taking into 86 

consideration SNR variations. Yilmaz et al. (2016) investigated the impact of SNR variations using 87 

only a particular rescaling method (VAR). Hence, before making comments with high confidence, 88 

a sensitivity study that comprehensively investigates the impact of SNR variations on the 89 

performances of various rescaling methods is still required. However, in the absence of evidence, 90 

it is viable that SNR variations will impact various rescaling methods similarly, though the actual 91 

degree of improvement via stronger/weaker rescaling strategies may depend on the particular 92 



 

 

rescaling method. Accordingly, a universally optimum rescaling method that fits all applications 93 

may not exist; the optimality of a rescaling method is largely application specific, particularly if 94 

the underlying assumptions inherent to its own methodology are not met. Hence, studies 95 

investigating the relative performances of different rescaling methods (both linear and nonlinear) 96 

may still contribute to the efforts on the topic of optimal rescaling methods, even without explicitly 97 

considering SNR variations. 98 

Satellite-based soil moisture data are often validated using station-based watershed average 99 

data (Jackson et al., 2010, 2012), which have considerably higher local nonlinearity, due to the 100 

soil moisture dynamics (Crow & Wood, 2002). The spatial support difference between station- 101 

and remote sensing-based products (i.e., point vs areal average) is another source that introduces 102 

nonlinear relations between different products. In a recent study, Zwieback et al. (2016) introduced 103 

nonparametric CDF and used two new parametric methods to extend TCA to investigate the impact 104 

of nonlinear relations on the error statistics obtained via TCA. This study particularly stresses the 105 

existing quadratic relations (e.g., the saturation of sensitivity of a product with respect to the 106 

sensitivity of another product) between the actual signal components of different soil moisture 107 

products, which may lead to nonlinear relations. Zwieback et al. (2016) also provided an extensive 108 

discussion on the existence of nonlinear relations between soil moisture products. It is, therefore, 109 

viable that such existing nonlinear relations between datasets may not be captured using linear 110 

methods, and the use of nonlinear methods may be necessary. By contrast, the variety of nonlinear 111 

methods used to rescale soil moisture datasets remains very limited, and there is still more room 112 

to investigate the performance of such nonlinear methods.  113 

Among the rescaling methods used in soil moisture studies, CDF (Drusch et al., 2005; 114 

Reichle & Koster, 2004; Yin et al., 2015; Zwieback et al., 2016) has received particular attention. 115 



 

 

Other methods, based on VAR (Crow et al., 2005; Draper et al., 2009; Su et al., 2013), REG1 116 

(Brocca et al., 2013; Crow & Zhan, 2007; Crow, 2007;), TCA (Yilmaz & Crow, 2013), quadratic 117 

polynomials (Zwieback et al., 2016), copula (Leroux et al., 2014), and Wavelets (Su & Ryu, 2015) 118 

have also been implemented to reduce the systematic differences between soil moisture time series. 119 

However, a comprehensive intercomparison of the performances of these methods in a soil 120 

moisture rescaling study has not yet been performed.  121 

The above-listed methodologies have been explicitly used in soil moisture rescaling 122 

studies, whereas many other methods have not. For example, multiple linear regressions using 123 

quadratic equations (REG2) and lagged observations (REGL) have previously been used in a soil 124 

moisture TCA framework (Crow et al., 2015; Su et al., 2014; Zwieback et al., 2016), but quadratic 125 

equations and lagged observations together (REGL2) have not. Among the many machine learning 126 

methodologies, ANN methods (Rochester et al., 1956) have been used to retrieve soil moisture via 127 

microwave measurements (Notarnicola et al., 2008; Paloscia et al., 2008; Prigent et al., 2005; 128 

Rodriguez et al., 2015) and SVM methods (Cortes & Vapnik, 1995) have been used to predict soil 129 

moisture (Gill et al., 2006) in the root zone using data assimilation techniques (Liu et al., 2010). 130 

Other methods that can be used to relate the different datasets, such as the nonlinear regression 131 

methods GEN (Koza, 1994) and MARS (Friedman, 1991), have not been used in soil moisture-132 

related studies. To our knowledge, none of these methods (REG2, REGL, REGL2, MARS, GEN, 133 

SVM, and ANN) have previously been explicitly used to rescale soil moisture datasets.  134 

The soil moisture has a high temporal memory (i.e., autocorrelation), and consecutively 135 

retrieved soil moisture observations have high dependence, implying that previously retrieved soil 136 

moisture observations could arguably be viewed as a slightly degraded version of the current 137 

values. This property is very valuable for satellite-based soil moisture retrievals; lagged soil 138 



 

 

moisture products could be used as independent observations, given that past observations are 139 

quasi-independently obtained from current observations. This dependence has been utilized by 140 

many recent studies (Crow et al., 2015; Su et al., 2014; Zwieback et al., 2013), particularly those 141 

focusing on soil moisture TCA methods, which require three independent products. Exploiting the 142 

same information source, lagged variables are inherently used by some ANN types in building 143 

robust relations between the input and output layers. Although many other methods (e.g., multiple 144 

linear regression, MARS, GEN, copula, and SVM) could also benefit from such information in the 145 

framework of rescaling soil moisture variables, such an effort has not been made to date. 146 

VAR, REG1, TCA, and CDF have unique solutions and are widely implemented in soil 147 

moisture rescaling studies. The optimality of linear rescaling methods (VAR, REG1, and TCA) in 148 

the context of data assimilation has been investigated both analytically and numerically by Yilmaz 149 

and Crow (2014), and some remedies are available for these methods when the underlying 150 

assumptions are not met (Crow & Yilmaz, 2014; Su et al., 2014). However, because the 151 

implementations of nonlinear rescaling methods remain limited in the context of rescaling soil 152 

moisture time series, the performance of these nonlinear methods, which are relative to that of 153 

linear methods, remains largely unexplored. Therefore, there is still room to investigate the 154 

performances of nonlinear methods relative to those of linear methods to better understand the 155 

degree of existing nonlinearity in soil moisture products, even though the degree of existing 156 

nonlinearity and degree to which these nonlinear relations can be captured drives the actual 157 

difference between the performance of the nonlinear and linear rescaling methodologies. 158 

This study is the first to use a number of methods (REG2, REGL, REGL2, ANN, SVM, 159 

GEN, and MARS) and their lagged types to explicitly rescale the soil moisture observations. This 160 

study also includes the first comprehensive comparison of the performances of linear methods 161 



 

 

(REG1, REG2, REGL, REGL2, VAR, TCA, and MARS) as well as nonlinear methods (CDF, 162 

copula, ANN, SVM, and GEN) in rescaling soil moisture datasets. Through these 163 

intercomparisons, this study comprehensively analyzes the added utility of lagged observations in 164 

a soil moisture rescaling framework. This study is particularly relevant for the efforts to create a 165 

homogenous time series in the framework of global soil moisture dataset validation (Leroux et al., 166 

2014) and trend analysis (Dorigo et al., 2012), contributes to the efforts to better understand the 167 

optimality of different rescaling methodologies (Yilmaz and Crow, 2013; Yilmaz et al., 2016), and 168 

adds to the efforts to identify the degree of the existing nonlinearity in soil moisture products. 169 

 170 

2. Linear and Nonlinear Rescaling Methods 171 

2.1. Linear Regression 172 

2.1.1 First-order Linear Regression 173 

Linear rescaling methods have been widely used to rescale soil moisture time series to 174 

reduce their inconsistency (Brocca et al., 2013; Crow et al., 2005; Crow & Zhan, 2007). Overall, 175 

linear rescaling methods are implemented by considering the most general linear relation between 176 

a reference dataset (X) and an original unscaled dataset (Y) in the form of: 177 

Y∗ = μX + (Y − μY)cY,         (1) 178 

where Y∗ is the rescaled version of Y; μX and μY are time averages of X and Y, respectively; and cY 179 

is a scalar rescaling factor (in this study, minimum-maximum fits are not considered). Here, cY is 180 

found using REG1, VAR, and TCA-based linear methods (Yilmaz and Crow, 2013): 181 

cY
R = ρXY σX/σY           (2) 182 

cY
V =  σX/σY            (3) 183 

cY
T = Σxz/Σyz.           (4) 184 



 

 

where Z is a third product that is similar to products X and Y; Σxz and Σyz are covariances between 185 

X-Z and Y-Z, respectively; cY
R, cY

V, and cY
T are the linear rescaling factors for the REG1-, VAR-, 186 

and TCA-based methods, respectively; σX and σY are the standard deviations of X and 187 

Y, respectively; and ρXY is the correlation coefficient between X and Y. Accordingly, the rescaled 188 

products are estimated as 189 

YREG1
∗ = μX + (Y − μY)cY

R,         (5) 190 

YVAR
∗ = μX + (Y − μY)cY

V,         (6) 191 

YTCA
∗ = μX + (Y − μY)cY

T,         (7) 192 

where YREG1
∗ , YVAR

∗ , and YTCA
∗  are the rescaled products using REG1, VAR, and TCA methods, 193 

respectively.  194 

 195 

2.1.2. Multiple Linear Regression 196 

  Above, the most general linear form (equation 1) is used to represent the relation between 197 

soil moisture products. The added utility of quadratic equations (Zwieback et al., 2016) and lagged 198 

variables (Su et al., 2014) have been recently investigated in the TCA framework. In this study, 199 

three multiple linear regression equations that take advantage of quadratic equations and lagged 200 

observations are considered: 201 

YREG2
∗ = μX + (Y − μY)cY1 +  (Y − μY)2cY2,      (8) 202 

YREGLt

∗ = μX + (Yt − μY)cY3 +  (Yt−1 − μY)cY4,      (9) 203 

YREGL2t

∗ = μX + (Yt − μY)cY5 +  (Yt−1 − μY)cY6 +  (Yt − μY)2cY7,             (10) 204 

where t is the time step; Yt−1 is the lagged version of Yt; YREG2
∗ , YREGLt

∗ , and YREGL2t

∗  are the rescaled 205 

products obtained using second order linear regression, lagged linear regression, and second 206 

order/lagged linear regression, respectively. In this study, only higher than second order linear 207 



 

 

regressions are not used because Zwieback et al. (2016) used second order relations, and our 208 

independent analysis also shows that second order relations yield the best results using independent 209 

validation data (results not shown). Here, even though the quadratic terms are nonlinear in the 210 

explanatory variable, in this study, they are investigated under the linear category as their 211 

regression parameters (intercept, slope, and quadratic coefficient) are linear. However, it is 212 

stressed that this choice is inconsequential and impacts neither the results nor the conclusions. 213 

   214 

2.1.3 Multivariate adaptive regression splines 215 

MARS (Friedman, 1991) is an extension of the linear regression method that handles 216 

nonlinearities and the dependence between datasets. The MARS algorithm partitions training 217 

datasets into splines (i.e., sections) with different slopes, and these splines are later smoothly 218 

connected to each other into basis functions (i.e., polynomials). Here, the role of these basic 219 

functions is to project Y (unscaled product) to a new variable H by considering a knot value (an 220 

inflection point) and hinge functions that are automatically determined by the data (Hastie et al., 221 

2009). 222 

The MARS algorithm consists of two phases of forward and backward stepwise 223 

procedures. In the forward stepwise procedure, the model aims to find basis functions that reduce 224 

the errors between the rescaled and reference variables the most. However, at the end of the 225 

forward phase, the algorithm produces a complex model that gives a poor response for predicting 226 

new independent data (Andres et al., 2011). In other words, the developed model in the forward 227 

phase will overfit with the training data and therefore require a backward stepwise selection to 228 

eliminate ineffective basis functions. The backward phase, in fact, prunes the model to create a 229 

more generalized model with better abilities. This phase starts its operations with the most general 230 



 

 

and simple model (i.e., the mean of the reference dataset) in the forward phase and moves forward 231 

by adding basis functions (i.e., polynomial) to the model. The least effective basis functions in the 232 

mean square sense are later eliminated, until the change in prediction error is small.  233 

In this study, the training procedure, including the application of forward and backward 234 

steps and the locating of knot points, is conducted by using earth package (Milborrow, 2016) in 235 

the R environment (a freely available data analysis programming language; R Core Team, 2015). 236 

For more details about the MARS and its development procedure see studies of Hastie et al. (2009) 237 

and Sharda et al. (2008). 238 

 239 

2.2. Nonlinear Rescaling Methods 240 

2.2.1 Artificial Neural Networks 241 

ANNs, which are originally modeled from the existing information processing paradigm 242 

of biological neural networks of the human brain (Chen & Billings, 1992), provide methods to 243 

establish relations between datasets (e.g., X and Y) through networks of neurons (nodes) in the so-244 

called hidden layers. There are different types of ANNs available in the literature, and they can be 245 

classified with respect to their structure (i.e., numbers of layers and the way in which their neurons 246 

are connected), training method, and activation function.  247 

  The structure of ANNs can be defined depending on the nature of the problem and datasets. 248 

Strictly linear systems do not require any hidden layer, while the use of one or two hidden layers 249 

is sufficient to solve most (if not all) complex nonlinear problems. However, the optimality of the 250 

number of neurons has been an ongoing debate for almost two decades (Huang & Babri, 1998; 251 

Kentel, 2009; Murata et al., 1994; Sheela & Deepa, 2013; Xu and Chen, 2008) and is not as clear 252 

as the optimality of the hidden layer number.  253 



 

 

In this study, four ANN functions [Multi-layer perceptron (MLP; Rosenblatt, 1958), Radial 254 

basis function (RBF; Poggio & Girosi, 1990), ELMAN (Elman, 1990), and JORDAN (Jordan, 255 

1997)] with different structures that belong to feed-forward, radial basis function, and recurrent 256 

networks, are used to rescale the dataset(s) to the scale of a reference dataset. The optimum number 257 

of hidden layers and neurons for each function are separately identified through a grid search 258 

within a domain of (1-2) and (1-40) for the number of hidden layers and their neurons, respectively. 259 

ANN implementations in this study have been carried out using the RSNNS package, which was 260 

written by Bergmeir and Benitez (2012) for the R environment (R Core Team, 2015). The 261 

structural properties of the ANN functions (e.g., training method, activation functions) are chosen 262 

by following the default values and guideline of the RSNNS package given in Table 1. For more 263 

details about the networks used in this study and the differences in their parameters, readers can 264 

refer to the user manual of the RSNNS package (Bergmeir & Benitez, 2012). 265 

  266 

2.2.2 Genetic Programming 267 

GEN (Koza, 1994; Vladislavleva et al., 2009) is an automatic programming technique that 268 

is based on Darwin's theory of population evolution (abandoning poor members of society and 269 

creating modified children selectively). GEN uses the Genetic Algorithm (GA) to create tree-270 

structured computer programs as a solution for defined problems (e.g., rescaling unscaled variables 271 

to the reference space). 272 

Given the availability of relevant datasets, GEN discovers their relationship through 273 

randomly created computer programs that are composed of mathematical functions and arithmetic 274 

operators without having a priori information about the datasets or their structures. GEN utilizes 275 

these functions and picks the best-fitted ones (i.e., refines these functions) in a statistical sense by 276 



 

 

exchanging information through so-called crossover and mutation operators. Here, the crossover 277 

operator combines randomly selected parts of two programs and creates a new program for the 278 

new population, while the mutation operator creates a new program by randomly selecting one 279 

part of a program and randomly mutating it. This refining process evolves over a series of 280 

generations until reaching the termination criteria (e.g., evolving time, maximum generations, 281 

error threshold, etc.). 282 

All of the steps of GEN in this study are performed by using the RGP package (Flasch et 283 

al., 2014) in the R language programming environment. The preliminary required parameters of 284 

GEN (e.g., the causality relationship between unscaled and reference soil moisture products, 285 

termination criteria, etc.) are presented in Table 2. The remaining required parameters (e.g., GA 286 

operator’s probabilities and performing procedure of them) are defined as per their default values 287 

following the guidelines of the RGP package (Flasch et al., 2014).  288 

 289 

2.2.3 Support Vector Machine 290 

SVM (Vapnik & Chervonenkis., 1974; Vapnik, 1998) is a statistic-based technique for 291 

general (nonlinear) classification and regression. The SVM seeks to find the optimal function (as 292 

flat as possible) with a margin that contains all points, with an error smaller than 𝜖 (Hernandez et 293 

al., 2009). This flat linear function can be found by using an 𝜖-insensitive loss function that 294 

penalizes errors greater than 𝜖, while the trade-off between flatness and precision is determined by 295 

the regularization constant, “C”, in an optimization problem as: 296 

min
α,α∗

[
1

2
(α − α∗)TQ(α − α∗) + ϵ ∑ (αi + αi

∗)l
i=1 + ∑ yi(αi − αi

∗)l
i=1 ],              (11) 297 

subject to 298 



 

 

 [0 ≤ αi], [αi
∗ ≤ C], [i = 1, … , l], [∑ (αi − αi

∗) = 0l
i=1 ]                           (12) 299 

where (𝛼𝑖, 𝛼𝑖
∗) are Lagrange multipliers, C is the upper bound, Q is a l by l positive semi definite 300 

matrix, 𝑄𝑖𝑗 ≡ 𝑥𝑖𝑥𝑗𝐾(𝑦𝑖, 𝑦𝑗), and 𝐾(𝑦𝑖, 𝑦𝑗) is the kernel function associated with the support 301 

vectors of (𝑦𝑖, 𝑦𝑗). The nonlinear kernel function transforms datasets into a higher dimensional 302 

feature space, where the optimized linear function in the new feature space is equal to a nonlinear 303 

regression in the original space (Olson & Delen, 2008). 304 

Here, the optimization of 𝜖, 𝐶, and 𝛾 (parameter of kernel function) in the above equations 305 

is essential for obtaining the best regression function (Smola & Scholkopf, 2004). Therefore, once 306 

the radial basis kernel function is selected, an optimization procedure is implemented for the 𝜖, C, 307 

and 𝛾 hyper parameters based on cross validation (the optimized values are not shown). The 308 

domains of the parameters that need to be  optimized are 0.01-1, 1-1000, and 0.5-1 for the 𝜖, C, 309 

and 𝛾 parameters, respectively (Hernandez et al., 2009; Meyer et al., 2015). In this study, the above 310 

calculations of the regression functions are performed by using the e1071 R package (Meyer et al., 311 

2015) in the R environment. For more details about the SVM and its development procedure, see 312 

the studies by Vapnik (1998) and Smola and Scholkopf (2004), and for the e1071 R package, see 313 

the study by Meyer et al. (2015). 314 

 315 

2.2.4 Cumulative Distribution Function Matching 316 

The CDF (Reichle & Koster, 2004) is among the earliest implemented techniques that aim 317 

to reduce the systematic differences between soil moisture datasets by the matching the cdf of the 318 

datasets. This method has been widely used in many applications, particularly in studies that focus 319 

on data assimilation (Drusch, 2007; Li et al., 2010). CDF aims to match the rankings (i.e., cdf) of 320 



 

 

a soil moisture dataset to those of a selected reference dataset. The schematic representation of the 321 

CDF used in this study is given in Figure 1 (i.e., the path shown by the panels BADE). For more 322 

details, please see the study by Reichle and Koster (2004).   323 

 324 

2.2.5 Copula 325 

Copula functions are widely used to describe the multivariate dependence between random 326 

variables by using their univariate distributions. More specifically, this method enables the 327 

estimation of a multivariate cdf of random variables by using copula functions that utilize the 328 

univariate cdf of random variables, assuming the marginal probability distributions follow a 329 

uniform distribution. The general equation for the estimation of the multivariate distribution in the 330 

copula approach is described by Sklar (1959) as follows: 331 

C(cdfu1
, cdfu2

, … , cdfuN
) = Pr(U1 ≤ u1, U2 ≤ u2, … , UN ≤ uN)              (13) 332 

Where C is a unique multivariate copula function that contains all of the dependence information 333 

among the datasets through a single parameter (e.g., P or θ). Here, Sklar’s theorem implies that 334 

for any group of random variables U1, U2, … , UN−1, there exists a copula function 335 

C(cdfu1
, cdfu2

, … , cdfuN
) that links these variables through an estimation of the multivariate 336 

probability distribution of these random variables.  337 

The copula approach explicitly requires a conditional multivariate cdf to find the solution 338 

to a rescaling problem, which can be found via the partial derivative of the copula functions in the 339 

following form:  340 

CUN|U1,U2,…,UN−1
=

∂C(cdfu1 ,cdfu2 ,…,cdfuN
)

∂C(cdfu1 ,cdfu2 ,…,cdfuN−1
)
.                             (14) 341 

Here, the goal is to first estimate cdfuN
 and to then retrieve the value of UN by utilizing the cdf of 342 

the observed variables (U1, U2, … , UN−1). Here, these observed variables could be selected as 343 



 

 

observations from different platforms as well as lagged values of the same variable to be predicted. 344 

However, the solution of equation 14 requires knowledge of the conditional cdf of the observed 345 

variables (cdfUN|U1,U2,…,UN−1
), which can be found through an iterative procedure (for details on 346 

this optimal solution, see the study of Leroux et al., 2014).  347 

The schematic representation of the CDF and copula methods that rescale the variable Y to 348 

X is shown in Figure 1. In this example, the conditional cdf of 0.47 gives the optimal copula result 349 

(panel C in Figure 1), which has a curved shape compared to the projection line of the cdf (straight 350 

line in panel A). The optimal shape and location of this projection line curvature in panel C can be 351 

found by optimizing the parameters P, θ, and/or conditional cdf value, whereas the optimality 352 

depends on the goal of the application. 353 

The list of copula functions used in this study [five total: NORMAL (Frahm et al., 2003), 354 

CLAYTON (Clayton, 1978), GUMBEL (Gumbel, 1960), FRANK (Genest, 1987), and JOE (Joe, 355 

1997)] and their properties are given in Table 3. In this study, all of the steps, including the 356 

calculation of the CDFs and the fitting of different copulas, are performed using the R 357 

programming language package “Copula”, which was written by Hofert et al. (2012). For more 358 

information about the mathematical properties of the copula function and families, fitting 359 

procedures, and simulation issues, see the studies by Genest and Favre (2004) and Nelsen (2013). 360 

 361 

2.2.6 Lagged Types 362 

Soil moisture is a highly autocorrelated variable; accordingly, any given day’s soil moisture 363 

observations contain valuable information about the next day’s actual soil moisture values. This 364 

implies that is it is viable to use lagged observations as independent observations (Crow et al., 365 

2015; Su et al., 2014) in addition to non-lagged observations (i.e., two input time series are used 366 



 

 

to predict a single output time series). Among the rescaling methods used in this study, the 367 

performances of the lagged versions of MARS (MARSL), GEN (GENL), SVM (SVML), MLP 368 

(MLPL), RBF (RBFL), ELMAN (ELMANL), JORDAN (JORDANL), NORMAL (NORMALL), 369 

CLAYTON (CLAYTONL), GUMBEL (GUMBELL), FRANK (FRANKL), and JOE (JOEL) are 370 

also evaluated in addition to their non-lagged types. 371 

 372 

2.3 Comparison of the Rescaling Methods 373 

In this study, the rescaling methods are compared for their ability to minimize the error 374 

variance of Y∗ (𝜎𝜖𝑌∗
2 ), minimize the error absolute mean bias (AMB), and maximize the ρ between 375 

X and Y∗ (ρXY∗). The details of these statistics are given below in chapter 4. Here, ρXY∗ and ρXY are 376 

the same for all linear rescaling methods. Among the linear methods, by definition, REGL2 377 

minimizes the 𝜎𝜖𝑌∗
2  of the training data; hence, REGL2 is preferable over other linear methods 378 

(REG1, REG2, REGL, VAR, and TCA) if 𝜎𝜖𝑌∗
2  is the selection criterion when the training and 379 

validation datasets are the same. Accordingly, the comparison of linear methods may not be 380 

meaningful given that REGL2 yields the minimum 𝜎𝜖𝑌∗
2  , whereas all of the methods have an 381 

identical ρXY∗ (if REGL3 was used, it would have further reduced the training 𝜎𝜖𝑌∗
2 ). By contrast, 382 

the optimality of REGL2 is not guaranteed when the parameters obtained using the training 383 

datasets are applied to independent validation datasets. This implies that the inter-comparison of 384 

linear methods for the validation of Y∗ is still necessary before confidently making conclusions 385 

about their performances.  386 

Linear and nonlinear methods have particular advantages and disadvantages, which impact 387 

their optimality for different applications and goals. Among the linear methods, REGL2 minimizes 388 

the mean square difference between X and Y∗, VAR matches the total variability components of X 389 



 

 

and Y, and TCA matches the signal variability components of Y and X so that the error variance of 390 

the analysis in data assimilation framework is minimized (Yilmaz & Crow, 2013). Accordingly, 391 

the applications that aim to linearly create a homogenous dataset for which Y∗ is closest to X (i.e., 392 

those that seek to minimize mean square errors) may prefer REGL2 (assuming that REGL2 does 393 

not severely overfit the datasets). MARS is expected to yield better results than the other linear 394 

methods (due to their advantage of the use of splines at different knot points), but this expectation 395 

may not be analytically proven because REG2 and REGL2 take advantage of quadratic relations. 396 

Given that merging-type studies (e.g., data assimilation) explicitly require the signal variability 397 

components of Y∗ and X to be the same, TCA is a better candidate for such studies (Yilmaz & 398 

Crow, 2013). Among the nonlinear rescaling methods, copula links the CDFX and CDFY 399 

multivariate functions instead of matching them, similar to CDF (Figure 1). By contrast, ANN, 400 

GEN, and SVM machine-learning methods establish the relationships between datasets and act 401 

like a system in which the input-output relations may be too complex to be shown explicitly with 402 

equations or perhaps cannot be shown at all. When ANN and GEN are compared, GEN has an 403 

advantage: first, the assembly of blocks (i.e., the input variables, target, and mathematical 404 

functions) is defined, and then, the optimized structure of the model and its coefficients are 405 

determined during the training process. By contrast, in ANNs, the structure of the network is 406 

specified first and the coefficients are then obtained during the training process. Conversely, the 407 

main drawback of GEN is its high computational cost due to the infinite search space of symbolic 408 

expressions.  409 

Overall, the relative performances of methods using independent datasets that are not used 410 

in their parameter estimation are not analytically predictable (including the linear methods). 411 

Hence, it may not be possible to analytically prove that any particular rescaling method will result 412 



 

 

in a superior accuracy by using independent validation data. Accordingly, a comparison of the 413 

performances of linear and nonlinear methods is still needed to attain a greater understanding of 414 

their relative added utility. 415 

 Many of the methods discussed here (ANN, GEN, SVM, and copula) have different 416 

structures and therefore different complexities. However, currently, these methods can be easily 417 

implemented in various applications using data analysis programming languages, such as R, 418 

Matlab, IDL, and Python. The available packages or toolboxes in these programming languages 419 

train the networks (e.g., optimize the weights of connections among the neurons of layers of the 420 

network) such that the considered performance statistics between the reference and predicted 421 

values are optimized. These packages require users only to define certain parameters (e.g., the 422 

number of hidden layers and neurons and type of functions that ANNs have to implement, such as 423 

learning, update, activation, and output functions; Table 2). Despite the fact that these methods 424 

have greater computational complexity (i.e., much longer codes running in the background) than 425 

other simpler rescaling methods (e.g., linear methods and CDF), these complex methods can be 426 

implemented using a couple of lines of codes that run for a very short time, similar to less-complex 427 

methods, once the optimized parameter sets are obtained (this optimization phase of these complex 428 

methods could require relatively longer computational times). Hence, there is relatively very little 429 

difference between the simpler methods (e.g., linear methods) and the more complex methods 430 

(e.g., machine learning methods), especially in terms of the computational ease of implementing 431 

these rescaling methods, except for the optimization of components. 432 

 433 



 

 

3. Datasets 434 

The remote sensing-based Land Parameter Retrieval Method (LPRM) soil moisture 435 

datasets (Owe et al., 2001, 2008) used in this study utilizes the Advanced Microwave Scanning 436 

Radiometer – Earth Observing System (AMSR-E) X-band and C-band observations. These 437 

datasets are acquired between 2002 and 2009 from the Vrije Universiteit Amsterdam (personal 438 

communication with Robert Parinussa, 2013). LPRM uses three parameters (soil moisture, 439 

vegetation water content, and soil or canopy temperature) as well as passive-microwave-based, 440 

dual-polarized (either 6.925 or 10.65 GHz) observations from AMSR-E for the retrieval of both 441 

the surface soil moisture and vegetation water content. The final LPRM soil moisture dataset is 442 

gridded to a spatial resolution of 0.25° and has a daily temporal resolution with a revisit time of 443 

~3 day. AMSR-E stopped transmitting data in October 2011 due to antenna problems, and the 444 

continuation of LPRM datasets will use observations retrieved from other sensors, such as the 445 

Advanced Microwave Scanning Radiometer-2 (Parinussa et al., 2015) and Fengyun-3B 446 

(Parinussa et al., 2014). For more details on the LPRM retrieval method, please see the studies by 447 

Owe et al. (2001, 2008). 448 

The watershed average in situ soil moisture datasets are obtained for the LPRM local 449 

overpass time over the four USDA ARS watersheds: Little River (LR), Little Washita (LW), 450 

Walnut Gulch (WG), and Reynolds Creek (RC). These four watersheds contain dense soil moisture 451 

sensors (each watershed contains 16 to 29 stations over a 150 to 610 km2 area, less than a single 452 

LPRM pixel area) that make soil moisture measurements at depths from 0 to 5 cm and at intervals 453 

of 20 to 60 min over forest, grazing land, semiarid, and mountainous climatic regions. The areas 454 

of these watersheds are smaller than one LPRM pixel area. Soil moisture measurements at different 455 

stations are averaged to obtain a time series that is representative of each watershed (Jackson et 456 



 

 

al., 2010). Verification of these watershed average datasets has been performed via comparisons 457 

against gravimetric soil moisture observations (Cosh et al., 2006, 2008). These datasets were 458 

previously used to validate AMSR-E and Soil Moisture and Ocean Salinity (SMOS) surface soil 459 

moisture products (Jackson et al., 2010, 2012). Watershed average datasets are acquired through 460 

the International Soil Moisture Network (ISMN; Dorigo et al., 2011). Given that these datasets are 461 

available only between June 2002 and July 2009 from the ISMN database, this study is limited 462 

between these dates, even though the LPRM dataset is available beyond 2009. Among the 463 

available data between these dates, there are 0 soil moisture values for 131, 2, and 52 days, for 464 

LW, WG, and RC, respectively; these 0 values are assumed to be missing and are not used in the 465 

analyses performed in this study. 466 

Among the linear methods, TCA requires the use of a third product (along with the 467 

watershed average and LPRM datasets) to estimate the rescaling coefficient (Stoffelen, 1998). For 468 

this purpose, Noah land surface model version 2.7 (Ek et al., 2003) simulations obtained from 469 

Global Land Data Assimilation System (GLDAS) simulations (Rodell et al., 2004) are used as the 470 

third product in the TCA calculations. NOAH soil moisture simulations representing the top 10 471 

cm from four USDA ARS watersheds are retrieved at a spatial resolution of 0.25° for the LPRM 472 

local overpass time. These datasets are obtained from the Goddard Earth Sciences Data and 473 

Information System (http://hydro1.sci.gsfc.nasa.gov/dods/). For more information about the 474 

dataset, see the study by Rodell et al. (2004). 475 

 476 

4. Added Utility of Rescaling Methods 477 

In this study, the LPRM soil moisture values are rescaled to watershed average datasets 478 

using linear (VAR, TCA, REG1, REG2, REGL, REGL2 and MARS) and nonlinear (CDF, GEN, 479 



 

 

SVM, ANN, and copula) methods, where ANN has four types (MLP, RBF, ELMAN, and 480 

JORDAN) and copula has five types (NORMAL, CLAYTON, GUMBEL, FRANK, and JOE). 481 

Additionally, 12 lagged types are also considered (MARSL, GENL, SVML, MLPL, RBFL, 482 

ELMANL, JORDANL, NORMALL, CLAYTONL, GUMBELL, FRANKL, and JOEL). Overall, 483 

31 different methods are considered in this study (7 linear, 12 nonlinear, and 12 lagged methods).  484 

The parameters obtained using training data are later used to rescale the LPRM validation 485 

datasets, and the accuracy of the rescaled LPRM datasets (LPRM∗) is later assessed using 486 

independent watershed average validation datasets and the statistics below: 487 

εi = Stai − LPRMi
∗                    (15) 488 

AMBi = |μεi
|                     (16) 489 

σεi
= √∑(εi − μεi

)
2

/(n − 1)                   (17) 490 

ρi =
ΣStaiLPRMi

∗

σStai
σLPRMi

∗
                    (18) 491 

where subscript 𝑖 indicates each watershed (total four), Sta is the station-based watershed average 492 

dataset, ε is the error of LPRM∗, and με and σε indicate the temporal mean and standard deviation 493 

of the errors, respectively, AMB indicates the error absolute mean bias, n is the number of available 494 

observations, and ∑( ) is the summation operator. The statistics ρ, σε, and AMB are calculated 495 

over four watersheds separately.  496 

Only mutually available LPRM and watershed average datasets are used to calculate all of 497 

the statistics (equations 16-18) in this study. The datasets are divided into training and validation 498 

parts. Some rescaling methods that are explicitly used in the autocorrelation information to rescale, 499 

traini and validate datasets cannot be selected via random sampling; accordingly, temporally 500 

continuous data are selected for training and validation. To reduce the impact of sampling errors 501 



 

 

on the results, two separate experiments are implemented: the first experiment uses the first (time-502 

wise) 25% of the data for validation and the remaining 75% for training, whereas the second 503 

experiment uses the first 75% for training and the remaining 25% for validation. Later, the statistics 504 

(equation 16-18) for these two experiments are averaged, and these averages are presented in this 505 

study.  506 

The added utility (U) of the rescaling methods is calculated with respect to the performance 507 

of the REG1 method: 508 

Um,s,l = Mm,s,l − REG1s,l,                   (19) 509 

where m represents 9 methods (listed below), s represents 4 locations (LR, LW, WG, and RC), l 510 

represents 3 statistics (ρ, σε, and AMB is obtained as the average of above defined two 511 

experiments), M represents the method of interest, and U is the added utility with respect to REG1. 512 

To ensure that U is always positive for the improvements and negative for the degraded results, 513 

the bias and standard deviation statistics are multiplied by -1. U is calculated only for the following 514 

selected methods: i) REGL2, ii) better performing MARS and MARSL, iii) CDF, iv) better 515 

performing GEN and GENL, v) better performing of SVM and SVML, vi) best performing type 516 

of copula (including all of the lagged types), vii) best performing type of ANN (including all of 517 

the lagged types), viii) the method (among the 31 methods) that gives the best statistical training 518 

(“Tr_best”), and ix) the method that gives the best statistics when the validation data are used 519 

(“Best”). For example, if MARSL gives the best ρ over LR using training data, then MARSL is 520 

selected as the “Tr_best” method for ρ over LR, whereas another method may perform better using 521 

the validation data (“Best”). Comparisons of U are performed separately over four watersheds. 522 

Similarly, these comparisons are repeated for each performance statistic (ρ, σε, and AMB, 3 total). 523 

 524 



 

 

5. Results and Discussion 525 

 The statistics of the LPRM and watershed average soil moisture datasets are analyzed 526 

(Table 4) prior to evaluating the results of the rescaling experiment. On average, there are 1600 527 

days where the LPRM and watershed average data are mutually available between June 2002 and 528 

July 2009. Two different experiments are conducted using two different training datasets, and 529 

validation dataset are used to check the consistency of the results. On average, 1200 of the available 530 

data points are used for training, for both experiments, whereas the remaining (~400) unused data 531 

points are left for independent validation. Overall, the statistics (μ, σ, and lag1 autocorrelation) of 532 

the datasets (Table 4) are very similar for the training and validation periods for both experiments 533 

(statistical significance tests are not performed). Unscaled original LPRM time series have 2-4 534 

times larger μ and σ than the watershed average time series, which can also be seen in the 535 

scatterplots of the datasets (Figure 2, upper row). This clearly shows that these datasets should be 536 

reconciled in some statistical sense (e.g., Figure 2, middle row) before they can be meaningfully 537 

compared or used to create a homogenous and consistent time series. The watershed average time 538 

series has 3.4%, 4.5%, 0.1%, and 5.5% missing data (results not shown) for the LR, LW, WG, and 539 

RC watersheds, respectively. The time series obtained over LR and RC have more missing data 540 

than those obtained over LW and WG, yet the autocorrelation values over RC are statistically 541 

significantly higher than the values over LW, WG, and WG (for both the LPRM and watershed 542 

average datasets). Higher autocorrelation values, despite more missing data, imply calculation 543 

differences between RC, and the remaining 3 watershed average data could be real; they may not 544 

be considerably impacted by the missing data, even though the LPRM autocorrelations are, on 545 

average, 0.10 lower than the watershed average values (perhaps due to the higher noise 546 

component). 547 



 

 

The statistics ρ, AMB, and σε (equations 16-18) for the 31 experiments for the training and 548 

validation periods are presented in Tables 5-6 and Figures 3-5. Table 5 shows the training and 549 

validation results numerically. Figures 3 and 4 show the average values obtained for four 550 

watersheds using the data presented in Table 5. Table 6 shows the added utility of the methods 551 

(only the best performing types are presented). Figure 5 represents the average values obtained for 552 

the four watersheds presented in Table 6. Here, the U values are calculated with respect to the 553 

REG1 values (Table 5) using equation 17. In general, a higher ρ is almost always associated with 554 

a lower σε for both validation and training datasets (Tables 5-6), implying that these statistics are 555 

consistent when representing the accuracy of the analyzed dataset. Overall, the relative 556 

performances of these 31 methods are very consistent for the training and validation datasets (i.e., 557 

better performing methods using training datasets also performed better when using validation 558 

datasets). This consistency can also be seen in the U values (Table 6 and Figure 5). This provides 559 

inferences about the relative performances of these rescaling methods when using training datasets, 560 

which could provide very meaningful information about independent data scenarios. The 561 

consistency between the training and validation results also supports the selection of training and 562 

validation periods; these two periods may not have a considerable difference in terms of the 563 

relation between the LPRM and watershed average data, as well as in terms of the relative 564 

performances of the rescaling methods.  565 

On average, the GENL and ELMANL ANN methods yield a ρ improvement of ~0.05 using 566 

independent validation datasets. This improvement is lower (0.02 - 0.04 ρ improvement) for the 567 

SVML, MARSL, REGL2, and NORMALL methods (Figure 5 and Table 6). In contrast to its wide 568 

use, the CDF method has no added skill (Figure 5); in fact, on average, it yields degraded 569 

correlations compared to REG1 when validated using independent data (Table 6). When the 570 



 

 

method selection is consistent with the training results, these Tr_best methods yield better U values 571 

than any method alone, with U values that are similar to the best validation results (“Best”) 572 

approximately 75% of the time (Figure 5). These results further support the above discussion that 573 

it is better to make a rescaling method selection that is consistent with the training data statistics, 574 

when this selection can yield better validation results than the selection of any other method alone. 575 

When the results are averaged over all of the watersheds, all of the nonlinear methods 576 

(except for JOE) demonstrated improved correlations compared to the REG1 correlations using 577 

the training datasets (Figure 3). When validation datasets are used, MARS, GEN, SVM, all four 578 

ANNs, and NORMAL still have superior correlations compared to REG1 (Table 5 and Figure 4). 579 

In particular, the improvements over LR, LW, and RC using GENL, SVML, and ELMANL (0.083, 580 

0.090, and 0.135), respectively, are much higher than the improvements over other locations via 581 

various methods (Table 6). Compared to the best performing linear method using the validation 582 

data (MARSL), on average, the GENL, SVML, ELMAN, ELMANL, JORDAN, and JORDANL 583 

nonlinear methods yielded better results (Figure 4). These outcomes stressed the results of the first-584 

order linear regression, which can be improved via higher order or more complex linear methods, 585 

and there is still added utility that can be gained via nonlinear methods compared to linear methods. 586 

Thus, nonlinear methods have a higher potential to give more accurate results compared to linear 587 

methods, and as a result, the existing nonlinear relations cannot be captured through linear 588 

methods. 589 

Soil moisture products have high autocorrelation; hence, two of the most recent soil 590 

moisture observations have a high linear dependence (Table 4 and Figure 2 bottom row). The use 591 

of lagged observations, in addition to the unscaled observations in a first-order linear framework 592 

(REGL), improves the statistics compared to REG1. However, the GEN and SVM methods yield, 593 



 

 

on average, better improvements than linear methods, such as REG1 and MARS (Table 7), 594 

particularly over LR and LW (the ρ difference between GENL and GEN over LR is 0.086 and the 595 

SVML and SVM difference over LW is 0.083). These results show that the overall nonlinear 596 

methods better utilize the lagged observation information (Table 4) and have a higher potential to 597 

improve the results compared to the linear methods, even though the degree of improvement varies 598 

for different methods. The ANN methods do not have much added skill via lagged observations, 599 

perhaps because these methods already utilize the lagged observation information. These results 600 

further highlight the higher potential of nonlinear methods in rescaling soil moisture datasets. 601 

When the parameters obtained using the training datasets are implemented over the 602 

validation datasets, some skill loss (i.e., artificial skill) is often observed because all of the methods 603 

overfit their datasets to some extent. Loosely speaking, an increase of 0.06 or 0.10 in ρ constitutes 604 

a statistically significant increase, especially when 1200 or 400 samples are used for training or 605 

validation experiments, respectively (e.g., an increase from 0.60 to 0.66 or from 0.60 to 0.70). 606 

Accordingly, MARS, SVM, and ELMAN yield significant ρ improvements (with respect to REG1 607 

ρ) over half of the training cases, whereas GEN, FRANK, and JORDAN also yield significant 608 

improvements over some locations (Table 5; most of the training improvements are over LW and 609 

RC, and only a few are over WG). By contrast, for validation experiments, only ELMAN and 610 

JORDAN resulted in significant ρ improvements (both over RC), showing that most of these 611 

improvements are artificial skills. Here, the degree to which the methods overfit the datasets is 612 

evaluated through the comparisons of ρ for the validation datasets (Figure 4) versus the training 613 

datasets (Figure 3), where higher differences indicate a higher degree of artificial skill. These 614 

differences show the artificial skill in ρ to be approximately 50% for ANN (ELMANL only have 615 

18% artificial skill); ~65-80% for GEN, MARS, and SVM; and ~ 100% for REGL2, CDF and the 616 



 

 

copula methods, on average (NORMALL has an artificial skill of only 65%). These results stress 617 

the use of independent validation data to avoid artificial skill. 618 

The skills of nonlinear methods are heavily impacted by the number of iterations performed 619 

to optimally obtain certain parameters. By contrast, increasing the degree of these iterations 620 

eventually results in overtraining and hence overfitting. For example, in this study, the maximum 621 

number of iterations for ANN simulations is set at 1000. When this number is increased to 100,000, 622 

training correlations can be obtained between the reference and rescaled products (as high as 0.90 623 

for certain cases). However, this gained training skill is quickly lost when the obtained ANN 624 

configurations and parameters are utilized on independent validation data. Such dramatic 625 

differences are more common for ANN than other methods (GEN, SVM, and copula), whereas the 626 

degree of overfitting using other methods does not depend as much on user specifications as ANN 627 

(results not shown). 628 

Among the copula methods, CLAYTON, GUMBEL, and JOE have asymmetric tail 629 

dependence properties (strong in one tail and weak in the other) and do not perform as well as 630 

NORMAL or FRANK, which have symmetric tail dependence for both training and validation 631 

experiments (Table 5). Both the copula and CDF methods use CDFX and CDFY to rescale 632 

observations. However, it is stressed that the performances of copula methods are very sensitive 633 

to the CX|Y values (equation 16), which are selected during training. The optimality of these CX|Y 634 

values depends on the objective of the training process (e.g., the minimization of AMB only, the 635 

maximization of ρ only, the minimization AMB and σ𝜖 simultaneously, or the minimization of 636 

AMB and σ𝜖, and the maximization of ρ simultaneously).  In this study, the penalty function is 637 

formed and CX|Y values are obtained in a way that training is penalized for increased AMB and σ𝜖 638 

and decreased ρ. Investigations for the added utility of lagged observations show only Normal 639 



 

 

Copula (Elliptical family) utilizing this information, whereas the remaining copula types 640 

(Archimedean family) result in degraded rescaled products, especially when lagged observations 641 

are also used and validated using independent data (Table 5 and Figure 4). This result is consistent 642 

with the study of Afshar et al. (2016), who found the Elliptical family to be better at capturing the 643 

dependency among variables than the copula functions of the Archimedean family.  644 

 645 

6. Conclusions 646 

In this study, LPRM soil moisture datasets are rescaled to station-based datasets over four 647 

USDA ARS watersheds to reduce the systematic differences between datasets. The rescaled 648 

datasets are validated by using independent data that are not used in the training part. This study 649 

is the first to perform a comprehensive comparison of the performances of various linear (VAR, 650 

TCA, REG1, REG2, REGL, REGL2, and MARS) and nonlinear (CDF, GEN, SVM, ANN, and 651 

copula) methods (total 31 methods); the first to use the REG2, REGL, REGL2, MARS, GEN, 652 

SVM, and ANN methods to explicitly rescale the soil moisture datasets in the framework of soil 653 

moisture rescaling; and the first to comprehensively investigate the added utility of lagged 654 

observations in the soil moisture rescaling framework.  655 

The relative performances of methods using training and validation datasets are consistent; 656 

the rescaling method that results in a more accurate rescaled product using training data also results 657 

in a more accurate rescaled product using validation data, and the best performing method using 658 

the training datasets yields better results than any other individual method that uses the validation 659 

datasets. Although the actual performances of the rescaling methods might change for different 660 

datasets, it is viable that a similar consistency would also exist for other datasets that are not used 661 

in this study. Such a consistency between the training and validation results gives confidence to 662 



 

 

the user in their selection of the rescaling method, particularly in the operational implementation 663 

of rescaling methods. 664 

A large majority of the related variability between products are due to first-order linear 665 

relations. Although multiple linear regression-based rescaling methods slightly improve the 666 

rescaled product statistics, the training and the validation statistics consistently show that nonlinear 667 

methods resulted in a more accurate rescaled product than linear methods. Overall, GENL and 668 

ELMAN improved independent validation dataset correlations the best (on average 0.05), whereas 669 

improvements reached as high as 0.14 at individual locations (ELMAN over RC).  670 

Among nonlinear methods, ELMAN exhibits superior performance, particularly when the 671 

datasets are highly autocorrelated (over RC), whereas the GEN and SVM methods exhibit superior 672 

performance when the lagged observations are also used as predictors (over LR and LW). 673 

Although lagged observations improve the rescaled product statistics when datasets are rescaled 674 

linearly, nonlinear methods yield better statistics than linear methods. This highlights that lagged 675 

observations, which contain valuable information in the soil moisture rescaling framework as in 676 

the TCA framework (Crow et al., 2015; Su et al., 2014; Zwieback et al., 2013). Nonlinear methods 677 

have higher added utility potential than linear methods in using lagged observations, in addition to 678 

their overall higher rescaling potential compared to the linear methods.  679 

The higher rescaling potential and lagged observation utilization potential compared to 680 

linear methods clearly show that the soil moisture datasets used in this study have nonlinear 681 

relations that cannot be modeled using linear methods. It is also viable that such nonlinear 682 

relationships may exist between other soil moisture datasets that are not used in this study. These 683 

results imply that the soil moisture inter-comparison studies (Albergel et al., 2012; Brocca et al., 684 

2011; Hain et al., 2011; Mladenova et al., 2014; Parinussa et al., 2014; Wagner et al., 2014) and 685 



 

 

non-data assimilation type blending studies (Leroux et al., 2014; Liu, et al., 2012, 2014) may 686 

benefit from these nonlinear rescaling methods, given the key results in this study. The 687 

performance metrics (ρ, σε, and AMB) can be considerably (in some cases statistically 688 

significantly) improved via such nonlinear methods, whereas their degree of improvements may 689 

be dataset specific. 690 

Recent studies highlight the utility of simple API models compared to more complex 691 

models (Crow et al., 2012; Han et al., 2014; Yilmaz et al., 2016), particularly in studies aiming to 692 

methodologically improve current techniques (Crow & Yilmaz, 2014; Yilmaz & Crow, 2013). 693 

Given that such simple models have better skills in drought studies (Crow et al., 2012), such 694 

models can be used to create long and homogenous time series, expanding to historical dates, 695 

where precipitation observations are available. To ensure the consistency of the units of the model 696 

values with traditional ground observations, this model time series could be rescaled to available 697 

ground observations, relying on the consistency found between the training and the validation 698 

datasets, where mutually available datasets can be used to retrieve the necessary parameters. 699 

Overall, it is likely that more accurate nonlinearly rescaled products will improve 700 

applications that are better related to studies using linearly rescaled products. For example, 701 

assimilation experiments require observations to be rescaled into model space before they can be 702 

merged. By definition, an assimilation of more accurate observations (e.g., obtained via 703 

nonlinearly rescaling methods) in models always results in a more accurate analysis than the 704 

assimilation of less accurate observations (unless the underlying assumptions are not met). On the 705 

one hand, Yilmaz and Crow (2013) show an assimilation analysis accuracy that depends on the 706 

degree to which the signal component of observations should be rescaled to the signal component 707 

of the model, rather than the overall product differences that are alleviated directly, as done in this 708 



 

 

study. Similarly, Su et al. (2014) and Zwieback et al. (2016) show that matching this signal 709 

component is also very important for error characterization. Consistently, Yilmaz and Crow (2013) 710 

demonstrate TCA matching of the signal components of the datasets and a better rescaling method 711 

than REG1 in the assimilation framework. The current study does not involve assimilation 712 

experiments and does not compare the actual signal components of the datasets; hence, only the 713 

explicit use of nonlinear methods in the assimilation framework (future study) may convey the real 714 

added utility via such nonlinear methods in assimilation experiments. On the other hand, an 715 

analysis accuracy improvement through the use of more accurate observations is inherent to the 716 

definition of assimilation studies. It is our expectation that the marginal gains in the rescaled 717 

dataset accuracy (e.g., ~ 0.02 ρ improvements) might not translate into large gains in assimilation 718 

analysis errors, whereas statistically significant improvements (e.g., 0.10 – 0.14) might translate 719 

into meaningful assimilation analysis improvements. Again, this expectation needs to be validated 720 

using a dedicated assimilation experiment.  721 
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List of Figure Captions 1022 

Figure 1: Schematic representations of the CDF and Copula based rescaling methods. The paths 1023 

in the BADE and BCFE panels represent the CDF and Copula methods, respectively. CX|Y = 0.47 1024 

is plotted with darker color in panel C to represent the best performing projection line of the 1025 

Copula. 1026 

Figure 2: Scatter plot of the Watershed average and LPRM soil moisture data over four 1027 

watersheds. Original (unscaled) and rescaled data are given in the upper and middle rows, 1028 

respectively; lagged unscaled LPRM vs unscaled LPRM are given in the lower row. 1029 

Figure 3: Performances of different rescaling methods during the training period were calculated 1030 

as averages of the statistics given by the equations (16-18). The above values are obtained by 1031 

averaging the results of two experiments by using different training and validation periods (i.e., 1032 

the first and the last 75% of the data, respectively) and by averaging the results for four watersheds. 1033 

Here, the olive green color represents copula, cyan represents ANN, dark green represents the 1034 

remaining nonlinear methods, orange represents the linear methods that result in a correlation 1035 

difference, and yellow represents the linear methods with no correlation change. 1036 

Figure 4: Performances of different rescaling methods during the validation period. The above 1037 

values are obtained by averaging the results of two experiments by using different validation 1038 

periods. 1039 

Figure 5: Added utility of the rescaling methods. 1040 
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Table 1: Parameters of the ANNs used in this study where identity is abbreviated as Id. 1042 

1043 

ANN 

Function Type 

Learning Update Output Activation 

MLP Back-propagation Topological order Id. 

Input Id. 

Hidden Id. 

Context --- 

Output Id. 

RBF 
Back-propagation 

 
Topological order Id. 

Input Id. 

Hidden Gaussian 

Context --- 

Output Id.+bias 

ELMAN Back-propagation JE Order Id. 

Input Id. 

Hidden Id. 

Context Id. 

Output Id. 

JORDAN Back-propagation JE Order Id. 

Input Id. 

Hidden Id. 

Context Id. 

Output Id. 



 

 

Table 2: Defined sets of GEN. 1044 

Parameter Rescaling method 

GEN GENL 

Causality relationship 𝑋 = 𝑓(𝑌) 𝑋 = 𝑓(𝑌, 𝑌𝑙𝑎𝑔) 

Function set "sin", "cos", "tan", "sqrt", "exp", "log", "+", "-", "*", "/", "^" 

Fitness function (𝑌∗ − 𝑋)
2

𝑁
 

Population size 100 

Stop condition Time (40 minutes) 

where 𝑋, 𝑌, 𝑌𝑙𝑎𝑔, and 𝑌∗
 are the reference, unscaled, lagged form of unscaled, and rescaled 

soil moisture products respectively and 𝑁 is the number of observations. 

 1045 



 

 

Table 3: Copula functions (CYX), parameters (P and θ), and characteristics used in this study. FX 1046 

and FY indicate CDFX and CDFY, respectively. 1047 

Copula 𝐂𝐘𝐗(𝐅𝐘, 𝐅𝐗) 
Tail 

Dependence 
Family 

Normal 
∫ ∫

exp [−
FY

2 − 2PFYFX + FX
2

2(1 − P2)
]

2π(1 − P2)
1

2⁄

∅−1(FX)

−∞

∅−1(FY)

−∞

dFYdFX 
Strong in 

center 
Elliptical 

Clayton (FY
−θ + FX

−θ − 1)−1/θ 
Strong in left 

tail 
Archimidean 

Gumbel exp{[(− 𝑙𝑛 𝐹𝑌)θ + (− 𝑙𝑛 𝐹𝑋)θ]
1
θ} 

Strong in right 

tail 
Archimidean 

Frank 
−1

θ
ln[1 +

(e−θFY − 1)(e−θFX − 1)

e−θ − 1
] 

Strong in 

center 
Archimidean 

Joe 1 − [(1 − FY)θ + (1 − FX)θ − (1 − FY)θ(1 − FX)θ]
1
θ 

Strong in right 

tail 
Archimidean 

 1048 

  1049 



 

 

Table 4: Statistics of the training and validation datasets for two experiments using the first and 1050 

the 25% of the data as validation, respectively, and the remaining data as training. 1051 

Exp. Dataset Loc. 

Num. 

avail. 

points 

Mean 
Standard 

deviation 

Lag1 

autocorrelation 

of datasets 

LPRM In-situ LPRM In-situ LPRM In-situ 

1 

Training 

(last 75%) 

LR 1193 0.311 0.105 0.099 0.046 0.784 0.819 

LW 1154 0.282 0.125 0.104 0.057 0.728 0.863 

WG 1239 0.18 0.046 0.074 0.022 0.801 0.889 

RC 1103 0.227 0.118 0.121 0.075 0.831 0.969 

Validation 

(first 25%) 

LR 396 0.331 0.109 0.098 0.044 0.757 0.805 

LW 383 0.286 0.118 0.099 0.052 0.686 0.751 

WG 411 0.176 0.045 0.083 0.021 0.785 0.849 

RC 366 0.232 0.107 0.104 0.072 0.778 0.974 

2 

Training 

(first 75%) 

LR 1192 0.316 0.106 0.1 0.046 0.757 0.826 

LW 1153 0.285 0.122 0.109 0.058 0.733 0.841 

WG 1238 0.18 0.044 0.077 0.022 0.789 0.879 

RC 1102 0.234 0.117 0.113 0.077 0.796 0.972 

Validation 

(last 25%) 

LR 397 0.314 0.105 0.095 0.043 0.855 0.784 

LW 384 0.276 0.127 0.077 0.049 0.628 0.828 

WG 412 0.175 0.048 0.076 0.02 0.814 0.881 

RC 367 0.21 0.109 0.129 0.067 0.866 0.963 

  1052 



 

 

Table 5: Detailed performance of different rescaling methods during training and validation periods. Best statistics are shown in bold. 1053 

The best performing method for training (Tr_best) and overall (best) are shown. The ones listed below are obtained by averaging the 1054 

results of two experiments with different training periods. 1055 

Statistic LOC ORG VAR TCA REG1 REG2 REGL REGL2 MARS MARSL CDF GEN GENL SVM SVML MLP MLPL RBF 

T
ra

in
in

g
 

ρ
 

LR 0.567 0.567 0.567 0.567 0.580 0.576 0.586 0.600 0.618 0.577 0.595 0.608 0.602 0.617 0.579 0.589 0.580 

LW 0.514 0.514 0.514 0.514 0.536 0.531 0.551 0.602 0.630 0.566 0.570 0.635 0.604 0.674 0.552 0.569 0.536 

WG 0.696 0.696 0.696 0.696 0.708 0.712 0.733 0.734 0.772 0.721 0.730 0.761 0.730 0.773 0.709 0.742 0.708 

RC 0.698 0.698 0.698 0.698 0.709 0.732 0.734 0.727 0.759 0.687 0.727 0.753 0.727 0.765 0.721 0.750 0.709 

σ
ε
 

LR 0.083 0.042 0.061 0.038 0.037 0.037 0.037 0.036 0.036 0.042 0.037 0.036 0.036 0.036 0.037 0.037 0.041 

LW 0.091 0.056 0.071 0.049 0.048 0.048 0.048 0.046 0.044 0.053 0.047 0.044 0.046 0.042 0.048 0.047 0.055 

WG 0.062 0.017 0.019 0.016 0.016 0.016 0.015 0.015 0.014 0.017 0.015 0.014 0.015 0.014 0.016 0.015 0.019 

RC 0.084 0.059 0.079 0.054 0.053 0.052 0.052 0.052 0.049 0.060 0.052 0.050 0.052 0.049 0.053 0.050 0.059 

A
M

B
 

LR 0.208 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.001 0.000 0.031 

LW 0.160 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.006 0.004 0.001 0.000 0.018 

WG 0.135 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 0.000 0.006 

RC 0.113 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.003 0.003 0.000 0.001 0.018 

V
al

id
at

io
n

 

ρ
 

LR 0.530 0.530 0.530 0.530 0.536 0.530 0.534 0.547 0.551 0.540 0.527 0.613 0.539 0.542 0.534 0.532 0.536 

LW 0.495 0.495 0.495 0.495 0.490 0.515 0.506 0.509 0.504 0.504 0.501 0.555 0.503 0.586 0.502 0.518 0.492 

WG 0.684 0.684 0.684 0.684 0.680 0.697 0.699 0.686 0.698 0.667 0.680 0.700 0.670 0.691 0.682 0.703 0.683 

RC 0.666 0.666 0.666 0.666 0.669 0.704 0.703 0.674 0.710 0.653 0.670 0.699 0.672 0.695 0.676 0.709 0.669 

σ
ε
 

LR 0.082 0.043 0.061 0.037 0.037 0.037 0.037 0.037 0.037 0.043 0.038 0.034 0.037 0.037 0.037 0.037 0.041 

LW 0.077 0.049 0.060 0.043 0.044 0.043 0.043 0.044 0.044 0.054 0.044 0.042 0.045 0.041 0.043 0.043 0.048 

WG 0.067 0.018 0.020 0.015 0.015 0.015 0.015 0.015 0.015 0.017 0.015 0.015 0.016 0.015 0.015 0.015 0.018 

RC 0.088 0.061 0.084 0.053 0.053 0.050 0.051 0.052 0.050 0.061 0.053 0.052 0.053 0.052 0.052 0.050 0.054 

A
M

B
 

LR 0.216 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.001 0.032 

LW 0.159 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.008 0.007 0.007 0.007 0.007 0.008 0.019 

WG 0.129 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.008 

RC 0.113 0.010 0.010 0.010 0.010 0.010 0.010 0.007 0.006 0.009 0.009 0.009 0.007 0.005 0.010 0.009 0.024 

1056 



 

 

Table 5, continuation. 1057 

Statistic LOC RBFL ELM. ELM.L JOR. JOR.L NOR. NOR.L CLA. CLA.L GUM. GUM.L FRA. FRA.L JOE JOEL Tr_best BEST 

T
ra

in
in

g
 

ρ
 

LR 0.585 0.595 0.601 0.591 0.597 0.585 0.591 0.581 0.558 0.566 0.546 0.594 0.562 0.517 0.517 0.618 0.618 

LW 0.558 0.583 0.592 0.556 0.585 0.561 0.570 0.560 0.519 0.550 0.523 0.581 0.531 0.520 0.511 0.674 0.674 

WG 0.740 0.747 0.748 0.726 0.737 0.722 0.746 0.631 0.655 0.721 0.727 0.725 0.727 0.720 0.727 0.773 0.773 

RC 0.741 0.850 0.844 0.829 0.826 0.708 0.741 0.725 0.759 0.697 0.746 0.709 0.751 0.673 0.734 0.850 0.850 

σ
ε
 

LR 0.038 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.038 0.038 0.039 0.037 0.038 0.039 0.039 0.036 0.036 

LW 0.048 0.046 0.046 0.048 0.047 0.047 0.047 0.047 0.049 0.048 0.050 0.047 0.049 0.049 0.050 0.042 0.042 

WG 0.019 0.015 0.015 0.016 0.015 0.015 0.015 0.017 0.017 0.016 0.015 0.015 0.015 0.016 0.015 0.014 0.014 

RC 0.054 0.040 0.041 0.043 0.043 0.054 0.052 0.052 0.050 0.055 0.051 0.055 0.051 0.056 0.052 0.040 0.040 

A
M

B
 

LR 0.024 0.003 0.005 0.006 0.007 0.000 0.000 0.017 0.023 0.001 0.004 0.001 0.004 0.000 0.002 0.000 0.000 

LW 0.023 0.008 0.007 0.006 0.009 0.000 0.002 0.025 0.029 0.000 0.013 0.000 0.036 0.001 0.005 0.000 0.000 

WG 0.038 0.002 0.001 0.004 0.003 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

RC 0.015 0.004 0.001 0.003 0.003 0.001 0.001 0.000 0.001 0.007 0.004 0.001 0.003 0.017 0.013 0.000 0.000 

V
al

id
at

io
n

 

ρ
 

LR 0.532 0.535 0.533 0.535 0.537 0.536 0.534 0.532 0.503 0.524 0.496 0.536 0.505 0.484 0.468 0.551 0.613 

LW 0.510 0.535 0.543 0.514 0.538 0.502 0.512 0.493 0.445 0.499 0.462 0.511 0.459 0.475 0.458 0.586 0.586 

WG 0.706 0.713 0.711 0.700 0.698 0.678 0.688 0.638 0.608 0.671 0.646 0.684 0.651 0.662 0.635 0.691 0.713 

RC 0.705 0.801 0.785 0.779 0.792 0.666 0.702 0.673 0.696 0.659 0.692 0.661 0.688 0.641 0.682 0.801 0.801 

σ
ε
 

LR 0.038 0.038 0.038 0.037 0.037 0.037 0.037 0.037 0.038 0.038 0.039 0.037 0.039 0.039 0.040 0.037 0.034 

LW 0.043 0.043 0.043 0.043 0.042 0.044 0.044 0.044 0.045 0.044 0.046 0.045 0.047 0.044 0.046 0.041 0.041 

WG 0.018 0.015 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016 0.017 0.015 0.016 0.016 0.017 0.015 0.015 

RC 0.051 0.043 0.045 0.044 0.045 0.054 0.052 0.053 0.052 0.055 0.053 0.056 0.054 0.054 0.052 0.043 0.043 

A
M

B
 

LR 0.026 0.004 0.007 0.004 0.006 0.002 0.002 0.016 0.021 0.001 0.006 0.002 0.006 0.001 0.003 0.003 0.001 

LW 0.024 0.016 0.016 0.007 0.011 0.008 0.007 0.022 0.028 0.009 0.021 0.007 0.035 0.010 0.005 0.007 0.005 

WG 0.036 0.004 0.004 0.004 0.004 0.003 0.003 0.002 0.002 0.003 0.003 0.002 0.002 0.003 0.003 0.003 0.002 

RC 0.021 0.005 0.006 0.007 0.008 0.008 0.007 0.009 0.007 0.012 0.009 0.007 0.008 0.022 0.018 0.010 0.005 
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Table 6: Added utility of the selected methods compared to the REG1 validation statistics (Table 5) over four watersheds. Positive 1059 

values indicate improvements, and negative values indicate degradation. 1060 

  ADDED UTILITY OF METHODS AGAINST REG1 STATISTICS 

Stat. LOC REGL2 MARSL CDF GENL SVML ELMAN NORMALL Tr_Best Best 

𝜌 

LR 0.004 0.021 0.010 0.083 0.012 0.005 0.004 0.021 0.083 

LW 0.011 0.008 0.009 0.059 0.090 0.040 0.016 0.090 0.090 

WG 0.016 0.015 -0.017 0.017 0.007 0.030 0.005 0.007 0.030 

RC 0.036 0.044 -0.013 0.033 0.029 0.135 0.036 0.135 0.135 

σε 

LR 0.000 0.001 -0.005 0.003 0.000 -0.001 0.000 0.001 0.003 

LW 0.000 -0.001 -0.010 0.002 0.002 0.001 -0.001 0.002 0.002 

WG 0.000 0.000 -0.002 0.000 0.000 0.000 0.000 0.000 0.001 

RC 0.002 0.003 -0.008 0.001 0.000 0.010 0.001 0.010 0.010 

𝐴𝑀𝐵 

LR 0.000 0.001 0.000 0.002 0.001 -0.001 0.001 0.000 0.002 

LW 0.000 0.000 0.000 -0.001 -0.001 -0.009 0.000 0.000 0.002 

WG 0.000 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 

RC 0.000 0.003 0.000 0.000 0.004 0.004 0.002 0.000 0.004 
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Table 7: Added utility of the lagged observations calculated as the statistic of the lagged type of a method minus a non-lagged type 1062 

(e.g., 0.020 ρ value over LW is obtained as ρ𝑅𝐸𝐺𝐿 − ρREG1; and 0.086 ρ value over LR is obtained as ρ𝐺𝐸𝑁𝐿 − ρGEN using values given 1063 

in Table 5). 1064 

  ADDED UTILITY OF LAGGED OBSERVATIONS 

Stat. LOC REG1 MARS GEN SVM ELMAN NORMAL 

𝜌 

LR 0.000 0.004 0.086 0.003 -0.002 -0.002 

LW 0.020 -0.005 0.053 0.083 0.008 0.010 

WG 0.013 0.013 0.020 0.021 -0.002 0.010 

RC 0.038 0.035 0.029 0.023 -0.016 0.036 

σε 

LR 0.000 0.000 0.003 0.000 0.000 0.000 

LW 0.001 0.000 0.002 0.004 0.000 0.000 

WG 0.000 0.000 0.000 0.001 0.000 0.000 

RC 0.002 0.002 0.002 0.001 -0.002 0.002 

𝐴𝑀𝐵 

LR 0.000 0.000 0.001 0.000 -0.003 0.000 

LW 0.000 0.000 0.000 0.000 0.000 0.001 

WG 0.000 0.000 0.000 0.000 0.000 0.000 

RC 0.000 0.001 -0.001 0.001 -0.001 0.000 
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 1066 

Figure 1: Schematic representations of the CDF and Copula based rescaling methods. The paths 1067 

in the BADE and BCFE panels represent the CDF and Copula methods, respectively. CX|Y =1068 

0.47 is plotted with darker color in panel C to represent the best performing projection line of the 1069 

Copula.  1070 



 

 

 1071 

Figure 2: Scatter plot of the Watershed average and LPRM soil moisture data over four watersheds. Original (unscaled) and rescaled 1072 

data are given in the upper and middle rows, respectively; lagged unscaled LPRM vs unscaled LPRM are given in the lower row.1073 



 

 

 1074 

Figure 3: Performances of different rescaling methods during the training period were calculated as averages of the statistics given by 1075 

the equations (16-18). The above values are obtained by averaging the results of two experiments by using different training and 1076 



 

 

validation periods (i.e., the first and the last 75% of the data, respectively) and by averaging the results for four watersheds. Here, the 1077 

olive green color represents copula, cyan represents ANN, dark green represents the remaining nonlinear methods, orange represents 1078 

the linear methods that result in a correlation difference, and yellow represents the linear methods with no correlation change.1079 



 

 

 1080 

Figure 4: Performances of different rescaling methods during the validation period. The above values are obtained by averaging the 1081 

results of two experiments by using different validation periods.1082 
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 1083 

Figure 5: Added utility of the rescaling methods. 1084 
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