19 research outputs found

    Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

    Get PDF
    This is the final version. Available on open access from the American Chemical Society via the DOI in this recordThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a 'primary' setup and the test data are generated on 'replicate' setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.COST (European Cooperation in Science and Technology)Portuguese Foundation for Science and TechnologyNational Research Fund of Luxembourg (FNR)China Scholarship Council (CSC)BOKU Core Facilities Multiscale ImagingDeutsche Forschungsgemeinschaft (DFG, German Research Foundation

    Determination of figures of merit for near-infrared and raman spectrometry by net analyte signal analysis for a 4-component solid dosage system

    No full text
    Process analytical technology has elevated the role of sensors in pharmaceutical manufacturing. Often the ideal technology must be selected from many suitable candidates based on limited data. Net analyte signal (NAS) theory provides an effective platform for method characterization based on multivariate figures of merit (FOM). The objective of this work was to demonstrate that these tools can be used to characterize the performance of 2 dissimilar analyzers based on different underlying spectroscopic principles for the analysis of pharmaceutical compacts. A fully balanced, 4-constituent mixture design composed of anhydrous theophylline, lactose monohydrate, microcrystalline cellulose, and starch was generated; it consisted of 29 design points. Six 13-mm tablets were produced from each mixture at 5 compaction levels and were analyzed by near-infrared and Raman spectroscopy. Partial least squares regression and NAS analyses were performed for each component, which allowed for the computation of FOM. Based on the calibration error statistics, both instruments were capable of accurately modeling all constituents. The results of this work indicate that these statistical tools are a suitable platform for comparing dissimilar analyzers and illustrate the complexity of technology selection

    High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae by Fourier Transform Infrared Spectroscopy

    Get PDF
    Single-channel optical density measurements of population growth are the dominant large scale phenotyping methodology for bridging the gene-function gap in yeast. However, a substantial amount of the genetic variation induced by single allele, single gene or double gene knock-out technologies fail to manifest in detectable growth phenotypes under conditions readily testable in the laboratory. Thus, new high-throughput phenotyping technologies capable of providing information about molecular level consequences of genetic variation are sorely needed. Here we report a protocol for high-throughput Fourier transform infrared spectroscopy (FTIR) measuring biochemical fingerprints of yeast strains. It includes high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-treatment to increase measurement accuracy. We demonstrate its capacity to distinguish not only yeast genera, species and populations, but also strains that differ only by a single gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Finally, we illustrated its applicability by determining the FTIR signatures of all viable Saccharomyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes. Many of the examined knock-out strains showed distinct, highly reproducible FTIR phenotypes despite having no detectable growth phenotype. These phenotypes were confirmed by conventional lipid analysis and could be linked to specific changes in lipid composition. We conclude that the introduced protocol is robust to noise and bias, possible to apply on a very large scale, and capable of generating biologically meaningful biochemical fingerprints that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a substantial potential for application in the molecular functionalization of the yeast genome
    corecore