5 research outputs found

    The Effect of Farming Management and Crop Rotation Systems on Chlorophyll Content, Dry Matter Translocation, and Grain Quantity and Quality of Wheat (<i>Triticum aestivum</i> L.) Grown in a Semi-Arid Region of Iran

    No full text
    To find suitable farming management approaches in the semi-arid climate of Iran, we set up an experiment combining three farm management practices with four crop rotation systems over four growing seasons (two winter and two summer seasons), from 2018 to 2020. The three farm management practices comprised: intensive (IF, with inorganic inputs, removal of crop residues from the soil, and weeds chemically controlled), organic (OF, with organic inputs, a return 30% of crop residues in the soil, and weeds mechanically controlled), and integrated (INT, with mineral/organic inputs, return 15% of crop residues to the soil, integrated weed control). The four crop rotation systems were: fallow-wheat (F-W), maize-wheat (M-W), sesame-wheat (S-W), and mung bean-wheat (B-W). Treatment effects were assessed by chlorophyll (Chl) content, photosynthetic parameters, and wheat grain quality and quantity measurements. All management practices from the first to the second year resulted in increases in the total Chl content and post-anthesis photosynthesis (PAP). The total Chl content under INT was improved through a greater increase in Chl-b compared to Chl-a. Dry matter remobilisation (DMR) was higher under INT than under IF. The highest (39) and lowest (23) grain number per spike were obtained in IF under B-W and OF under F-W, respectively. B-W produced the highest grain yield (541.4 g m−2). The protein contents in farming with organic matter inputs were higher than that under IF. INT produced an optimum level of wheat yield despite a 50% reduction in chemical inputs, and this was achieved through the fast absorption of chemical elements at the beginning of growth, and having access—at the grain filling stage—to elements derived from organic matter decomposition, and through the utilisation of DMR. Our results indicate that implementing B-W and S-W under INT is a promising strategy for this region. However, the results need to be further evaluated by long-term experiments

    Table_1_Cropping systems and agricultural management strategies affect soil organic carbon dynamics in semi-arid regions.DOCX

    No full text
    IntroductionSoil organic carbon (SOC) dynamic is one of the important factors that directly influence soil properties and quality. In agro-ecosystems, the SOC dynamics are strongly linked to agricultural management practices.MethodsIn this study, we investigated the response of SOC and its fractions to various combination of agricultural management practices based on measurements obtained from an experiment conducted over four growing seasons from 2018 to 2020 in Ahvaz, Iran. The experimental treatments involved three agricultural strategies combined with four crop rotation systems. The agricultural strategies comprised conventional (CON: mineral fertilizer, removal of all crop residues), organic (ORG: organic fertilizer, 30% return of crop residues to the soil), and integrated (INT: mineral/organic fertilizer, 15% return of crop residues) strategies. The crop rotation systems were: fallow-wheat (F-W), corn-wheat (C-W), sesame-wheat (S-W), and mung bean-wheat (B-W). Soil samples were collected from all treatments and SOC, labile-C, and non-labile-C were measured.Results and discussionAfter two years of experiment, no significant improvement was found in SOC of CON strategy (p ≀ 0.05). The ORG and INT strategies contained on average 1.1 and 1.06 times more SOC than the CON strategy, respectively. The value of labile-C was decreased during summer cultivations and increased in the soil samples collected after winter cultivations. However, although the quantity of labile-C in ORG (2 g kg−1) was higher than INT (1.83 g kg−1) and CON (1.87 g kg−1) overall during the experiment time, after the second summer cultivation despite the gradual accumulation of organic matter due to high levels of temperature and humidity, the content in ORG reduced to1.47 g kg−1. In all three agricultural management strategies, the SOC content in the four rotation systems was according to the following descending order B-W (5.7 g kg−1) > C-W (5.29 g kg−1) > S-W (5.23 g kg−1) > F-W (4.52 g kg−1). Therefore, for this region M-W and S-W crop rotation systems are recommended in addition to C-W (which is the most common rotation system). However, crop rotation systems were more beneficial for C-sequestration when combined with organic and inorganic fertilization and crop residue incorporation. This study gives promising results for implementing INT and ORG strategies under long-term cropping systems containing various summer crops in rotation with wheat for improving SOC dynamics in semi-arid regions in Iran.</p

    Response of Wheat Seedlings to Combined Effect of Drought and Salinity

    No full text
    corecore