2,491 research outputs found

    Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aert's machine-models

    Full text link
    From the beginning of his research, the Belgian physicist Diederik Aerts has shown great creativity in inventing a number of concrete machine-models that have played an important role in the development of general mathematical and conceptual formalisms for the description of the physical reality. These models can also be used to demystify much of the strangeness in the behavior of quantum entities, by allowing to have a peek at what's going on - in structural terms - behind the "quantum scenes," during a measurement. In this author's view, the importance of these machine-models, and of the approaches they have originated, have been so far seriously underappreciated by the physics community, despite their success in clarifying many challenges of quantum physics. To fill this gap, and encourage a greater number of researchers to take cognizance of the important work of so-called Geneva-Brussels school, we describe and analyze in this paper two of Aerts' historical machine-models, whose operations are based on simple breakable elastic bands. The first one, called the spin quantum-machine, is able to replicate the quantum probabilities associated with the spin measurement of a spin-1/2 entity. The second one, called the \emph{connected vessels of water model} (of which we shall present here an alternative version based on elastics) is able to violate Bell's inequality, as coincidence measurements on entangled states can do.Comment: 15 pages, 5 figure

    Estimating stellar oscillation-related parameters and their uncertainties with the moment method

    Full text link
    The moment method is a well known mode identification technique in asteroseismology (where `mode' is to be understood in an astronomical rather than in a statistical sense), which uses a time series of the first 3 moments of a spectral line to estimate the discrete oscillation mode parameters l and m. The method, contrary to many other mode identification techniques, also provides estimates of other important continuous parameters such as the inclination angle alpha, and the rotational velocity v_e. We developed a statistical formalism for the moment method based on so-called generalized estimating equations (GEE). This formalism allows the estimation of the uncertainty of the continuous parameters taking into account that the different moments of a line profile are correlated and that the uncertainty of the observed moments also depends on the model parameters. Furthermore, we set up a procedure to take into account the mode uncertainty, i.e., the fact that often several modes (l,m) can adequately describe the data. We also introduce a new lack of fit function which works at least as well as a previous discriminant function, and which in addition allows us to identify the sign of the azimuthal order m. We applied our method to the star HD181558, using several numerical methods, from which we learned that numerically solving the estimating equations is an intensive task. We report on the numerical results, from which we gain insight in the statistical uncertainties of the physical parameters involved in the moment method.Comment: The electronic online version from the publisher can be found at http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2005.00487.

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    What is Quantum? Unifying Its Micro-Physical and Structural Appearance

    Full text link
    We can recognize two modes in which 'quantum appears' in macro domains: (i) a 'micro-physical appearance', where quantum laws are assumed to be universal and they are transferred from the micro to the macro level if suitable 'quantum coherence' conditions (e.g., very low temperatures) are realized, (ii) a 'structural appearance', where no hypothesis is made on the validity of quantum laws at a micro level, while genuine quantum aspects are detected at a structural-modeling level. In this paper, we inquire into the connections between the two appearances. We put forward the explanatory hypothesis that, 'the appearance of quantum in both cases' is due to 'the existence of a specific form of organisation, which has the capacity to cope with random perturbations that would destroy this organisation when not coped with'. We analyse how 'organisation of matter', 'organisation of life', and 'organisation of culture', play this role each in their specific domain of application, point out the importance of evolution in this respect, and put forward how our analysis sheds new light on 'what quantum is'.Comment: 10 page

    The PLATO End-to-End CCD Simulator -- Modelling space-based ultra-high precision CCD photometry for the assessment study of the PLATO Mission

    Full text link
    The PLATO satellite mission project is a next generation ESA Cosmic Vision satellite project dedicated to the detection of exo-planets and to asteroseismology of their host-stars using ultra-high precision photometry. The main goal of the PLATO mission is to provide a full statistical analysis of exo-planetary systems around stars that are bright and close enough for detailed follow-up studies. Many aspects concerning the design trade-off of a space-based instrument and its performance can best be tackled through realistic simulations of the expected observations. The complex interplay of various noise sources in the course of the observations made such simulations an indispensable part of the assessment study of the PLATO Payload Consortium. We created an end-to-end CCD simulation software-tool, dubbed PLATOSim, which simulates photometric time-series of CCD images by including realistic models of the CCD and its electronics, the telescope optics, the stellar field, the pointing uncertainty of the satellite (or Attitude Control System [ACS] jitter), and all important natural noise sources. The main questions that were addressed with this simulator were the noise properties of different photometric algorithms, the selection of the optical design, the allowable jitter amplitude, and the expected noise budget of light-curves as a function of the stellar magnitude for different parameter conditions. The results of our simulations showed that the proposed multi-telescope concept of PLATO can fulfil the defined scientific goal of measuring more than 20000 cool dwarfs brighter than mV =11 with a precision better than 27 ppm/h which is essential for the study of earth-like exo-planetary systems using the transit method.Comment: 5 pages, submitted for the Proceedings of the 4th HELAS International Conference: Seismological Challenges for Stellar Structur

    Close-up of primary and secondary asteroseismic CoRoT targets and the ground-based follow-up observations

    Full text link
    To optimise the science results of the asteroseismic part of the CoRoT satellite mission a complementary simultaneous ground-based observational campaign is organised for selected CoRoT targets. The observations include both high-resolution spectroscopic and multi-colour photometric data. We present the preliminary results of the analysis of the ground-based observations of three targets. A line-profile analysis of 216 high-resolution FEROS spectra of the delta Sct star HD 50844 reveals more than ten pulsation frequencies in the frequency range 5-18 c/d, including possibly one radial fundamental mode (6.92 c/d). Based on more than 600 multi-colour photometric datapoints of the beta Cep star HD180642, spanning about three years and obtained with different telescopes and different instruments, we confirm the presence of a dominant radial mode nu1=5.48695 c/d, and detect also its first two harmonics. We find evidence for a second mode nu2=0.3017 c/d, possibly a g-mode, and indications for two more frequencies in the 7-8 c/d domain. From Stromgren photometry we find evidence for the hybrid delta Sct/gamma Dor character of the F0 star HD 44195, as frequencies near 3 c/d and 21 c/d are detected simultaneously in the different filters.Comment: 7 pages, 6 figures, HELAS II International Conference "Helioseismology, Asteroseismology and MHD Connections", 2008, J.Phys.: Conf. Ser. 118, 01207

    Random redundant storage in disk arrays: Complexity of retrieval problems

    Get PDF
    Random redundant data storage strategies have proven to be a good choice for efficient data storage in multimedia servers. These strategies lead to a retrieval problem in which it is decided for each requested data block which disk to use for its retrieval. In this paper, we give a complexity classification of retrieval problems for random redundant storage

    Risk allocation in a public-private catastrophe insurance system:an actuarial analysis of deductibles, stop-loss, and premiums

    Get PDF
    A public-private (PP) partnership could be a viable arrangement for providing insurance coverage for catastrophe events, such as floods and earthquakes. The objective of this paper is to obtain insights into efficient and practical allocations of risk in a PP insurance system. In particular, this study examines how the deductible and stop-loss levels (retentions) for, respectively, the insured and the insurer, relate to the corresponding maximum required coverage and premium amounts under the 99.9% tail value at risk (TVaR) damage constraint. A practical example of flood insurance in the Netherlands is studied in which the (re)insurance could be provided either by a risk-averse (private) or a risk-neutral (public) agency, which could result in large differences in premiums
    • …
    corecore