508 research outputs found

    Open-source genomic analysis of Shiga-toxin–producing E. coli O104:H4

    Get PDF
    An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance

    The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells

    Get PDF
    In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 mu g/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 -10 ng per mu g of total MV protein, a concentration that accounts for the cellular responses see

    The Impact of Antimicrobial Therapy Duration in the Treatment of Prosthetic Joint Infections Depending on Surgical Strategies: A Systematic Review and Meta-analysis

    Full text link
    The aim of this systematic review was to address the question if short antibiotic treatment (SAT; at least 4 but <12 weeks) versus long antibiotic treatment (LAT) affects outcomes in prosthetic joint infections (PJIs). Database research (Medline, Embase, Web of Science, Scopus, Cochrane) retrieved 3740 articles, of which 10 studies were included in the analysis. Compared to LAT, 11% lower odds of treatment failure in the SAT group were found, although the difference was not statistically significant (pooled odds ratio, 0.89 [95% confidence interval, .53-1.50]). No difference in treatment failure was found between SAT and LAT once stratified by type of surgery, studies conducted in the United States versus Europe, study design, and follow-up. There is still no conclusive evidence that antibiotic treatment of PJIs for 12 weeks or longer is associated with better outcomes, irrespective of the type of surgical procedure. Most recent, high-quality studies tend to favor longer antibiotic courses, making them preferable in most situations

    Xenotropic Murine Leukemia Virus–related Gammaretrovirus in Respiratory Tract

    Get PDF
    Xenotropic murine leukemia virus–related gammaretrovirus (XMRV) has been recently associated with prostate cancer and chronic fatigue syndrome. To identify nucleic acid sequences, we examined respiratory secretions by using PCR. XMRV-specific sequences were detected in 2%–3% of samples from 168 immunocompetent carriers and ≈10% of samples from 161 immunocompromised patients

    Yersinia Virulence Factor YopM Induces Sustained RSK Activation by Interfering with Dephosphorylation

    Get PDF
    Background: Pathogenic yersiniae inject several effector proteins (Yops) into host cells, which subverts immune functions and enables the bacteria to survive within the host organism. YopM, whose deletion in enteropathogenic yersiniae results in a dramatic loss of virulence, has previously been shown to form a complex with and activate the multifunctional kinases PKN2 and RSK1 in transfected cells. Methodology/Principal Findings: In a near physiological approach with double-affinity-tagged YopM being translocated into the macrophage cell line J774A.1 via the natural type three secretion system of Yersinia we verified the interaction of YopM with PKN2 and RSK1 and detected association with additional PKN and RSK isoforms. In transfected and infected cells YopM induced sustained phosphorylation of RSK at its activation sites serine-380 and serine-221 even in the absence of signalling from its upstream kinase ERK1/2, suggesting inhibition of dephosphorylation. ATP-depletion and in vitro assays using purified components directly confirmed that YopM shields RSK isoforms from phosphatase activity towards serines 380 and 221. Conclusions/Significance: Our study suggests that during Yersinia infection YopM induces sustained activation of RSK by blocking dephosphorylation of its activatory phosphorylation sites. This may represent a novel mode of action of a bacterial virulence factor

    Yersinia V–Antigen Exploits Toll-like Receptor 2 and CD14 for Interleukin 10–mediated Immunosuppression

    Get PDF
    A characteristic of the three human-pathogenic Yersinia spp. (the plague agent Yersinia pestis and the enteropathogenic Yersinia pseudotuberculosis and Yersinia enterocolitica) is the expression of the virulence (V)-antigen (LcrV). LcrV is a released protein which is involved in contact-induced secretion of yersinia antihost proteins and in evasion of the host's innate immune response. Here we report that recombinant LcrV signals in a CD14- and toll-like receptor 2 (TLR2)-dependent fashion leading to immunosuppression by interleukin 10 induction. The impact of this immunosuppressive effect for yersinia pathogenesis is underlined by the observation that TLR2-deficient mice are less susceptible to oral Y. enterocolitica infection than isogenic wild-type animals. In summary, these data demonstrate a new ligand specificity of TLR2, as LcrV is the first known secreted and nonlipidated virulence-associated protein of a Gram-negative bacterium using TLR2 for cell activation. We conclude that yersiniae might exploit host innate pattern recognition molecules and defense mechanisms to evade the host immune response

    Heatwave-associated Vibrio infections in Germany, 2018 and 2019

    Get PDF
    Background: Vibrio spp. are aquatic bacteria that prefer warm seawater with moderate salinity. In humans, they can cause gastroenteritis, wound infections, and ear infections. During the summers of 2018 and 2019, unprecedented high sea surface temperatures were recorded in the German Baltic Sea. Aim: We aimed to describe the clinical course and microbiological characteristics of Vibrio infections in Germany in 2018 and 2019. Methods: We performed an observational retrospective multi-centre cohort study of patients diagnosed with domestically-acquired Vibrio infections in Germany in 2018 and 2019. Demographic, clinical, and microbiological data were assessed, and isolates were subjected to whole genome sequencing and antimicrobial susceptibility testing. Results: Of the 63 patients with Vibrio infections, most contracted the virus between June and September, primarily in the Baltic Sea: 44 (70%) were male and the median age was 65 years (range: 2–93 years). Thirty-eight patients presented with wound infections, 16 with ear infections, six with gastroenteritis, two with pneumonia (after seawater aspiration) and one with primary septicaemia. The majority of infections were attributed to V. cholerae (non–O1/non-O139) (n = 30; 48%) or V. vulnificus (n = 22; 38%). Phylogenetic analyses of 12 available isolates showed clusters of three identical strains of V. vulnificus, which caused wound infections, suggesting that some clonal lines can spread across the Baltic Sea. Conclusions: During the summers of 2018 and 2019, severe heatwaves facilitated increased numbers of Vibrio infections in Germany. Since climate change is likely to favour the proliferation of these bacteria, a further increase in Vibrio-associated diseases is expected.Peer Reviewe
    corecore