105 research outputs found

    Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 1761-1771, doi:10.1016/j.gca.2005.12.020.The natural abundance of radiocarbon (14C) provides unique insight into the source and cycling of sedimentary organic matter. Radiocarbon analysis of bacterial phospholipid lipid fatty acids (PLFAs) in salt-marsh sediments of southeast Georgia (USA) – one heavily contaminated by petroleum residues – was used to assess the fate of petroleum-derived carbon in sediments and incorporation of fossil carbon into microbial biomass. PLFAs that are common components of eubacterial cell membranes (e.g., branched C15 and C17, 10-methyl-C16) were depleted in 14C in the contaminated sediment (mean Δ14C value of +25 ± 19 ‰ for bacterial PLFAs) relative to PLFAs in uncontaminated “control” sediment (Δ14C = +101 ± 12‰). We suggest that the 14C-depletion in bacterial PLFAs at the contaminated site results from microbial metabolism of petroleum and subsequent incorporation of petroleum-derived carbon into bacterial membrane lipids. A mass balance calculation indicates that 6-10% of the carbon in bacterial PLFAs at the oiled site could derive from petroleum residues. These results demonstrate that even weathered petroleum may contain components of sufficient lability to be a carbon source for biomass production by marsh sediment microorganisms. Furthermore, a small but significant fraction of fossil carbon is assimilated even in the presence of a much larger pool of presumably more-labile and faster-cycling carbon substrates.This study was supported by Georgia Sea Grant (RR100-221/926784), the National Science Foundation (OCE-9911678) and NOSAMS (thanks to J. M. Hayes)

    Microbially mediated reduction of FeIII and AsV in Cambodian sediments amended with 13C-labelled hexadecane and kerogen

    Get PDF
    Microbial activity is generally accepted to play a critical role, with the aid of suitable organic carbon substrates, in the mobilisation of arsenic from sediments into shallow reducing groundwaters. The nature of the organic matter in natural aquifers driving the reduction of AsV to AsIII is of particular importance but is poorly understood. In this study, sediments from an arsenic rich aquifer in Cambodia were amended with two 13C-labelled organic substrates. 13C-hexadecane was used as a model for potentially bioavailable long chain n-alkanes and a 13C-kerogen analogue as a proxy for non-extractable organic matter. During anaerobic incubation for 8 weeks, significant FeIII reduction and AsIII mobilisation were observed in the biotic microcosms only, suggesting that these processes were microbially driven. Microcosms amended with 13C-hexadecane exhibited a similar extent of FeIII reduction to the non-amended microcosms, but marginally higher AsIII release. Moreover, gas chromatography–mass spectrometry analysis showed that 65 % of the added 13C-hexadecane was degraded during the 8-week incubation. The degradation of 13C-hexadecane was microbially driven, as confirmed by DNA stable isotope probing (DNA-SIP). Amendment with 13C-kerogen did not enhance FeIII reduction or AsIII mobilisation, and microbial degradation of kerogen could not be confirmed conclusively by DNA-SIP fractionation or 13C incorporation in the phospholipid fatty acids. These data are, therefore, consistent with the utilisation of long chain n-alkanes (but not kerogen) as electron donors for anaerobic processes, potentially including FeIII and AsV reduction in the subsurface

    Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions

    No full text
    Natural relationships, improvement of anaerobic growth on hydrocarbons, and properties that may provide clues to an understanding of oxygen-independent alkane metabolism were studied with two mesophilic sulfate-reducing bacteria, strains Hxd3 and Pnd3. Strain Hxd3 had been formerly isolated from an oil tank; strain Pnd3 was isolated from marine sediment. Strains Hxd3 and Pnd3 grew under strictly anoxic conditions on n-alkanes in the range of C-12-C-20 and C-14-C-17, respectively, reducing sulfate to sulfide. Both strains shared 90% 16 S rRNA sequence similarity and clustered with classified species of completely oxidizing, sulfate-reducing bac bacteria within the delta-subclass of Proteobacteria. Anaerobic growth on alkanes was stimulated by alpha-cyclodextrin, which served as a non-degradable carrier for the hydrophobic substrate. Cells of strain Hxd3 grown on hydrocarbons and alpha-cyclodextrin were used to study the composition of cellular fatty acids and in vivo activities. When strain Hxd3 was grown on hexadecane (C16H34), cellular fatty acids with C-odd chains were dominant. Vice versa, cultures grown on heptadecane (C17H36) contained mainly fatty acids with C-even chains. In contrast, during growth on 1-alkenes or fatty acids, a C-even substrate yielded C-even fatty acids, and a C-odd substrate yielded C-odd fatty acids. These results suggest that anaerobic degradation of alkanes by strain Hxd3 does not occur via a desaturation to the corresponding 1-alkenes, a hypothetical reaction formerly discussed in the literature. Rather an alteration of the carbon chain by a C-odd carbon unit is likely to occur during activation; one hypothetical reaction is a terminal addition of a C-1, unit. In contrast, fatty acid analyses of strain Pnd3 after growth on alkanes did not indicate an alteration of the carbon chain by a C-odd carbon unit, suggesting that the initial reaction differed from that in strain Hxd3. When hexadecane-grown cells of strain Hxd3 were resuspended in medium with 1-hexadecene, an adaptation period of 2 days was observed. Also this result is not in favor of an anaerobic alkane degradation via the corresponding l-alkene
    corecore