2,900 research outputs found

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    Exciton condensation driving the periodic lattice distortion of 1T-TiSe2

    Get PDF
    We address the lattice instability of 1T-TiSe2 in the framework of the exciton condensate phase. We show that, at low temperature, condensed excitons influence the lattice through electron-phonon interaction. It is found that at zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton condensate exerts a force on the lattice generating ionic displacements comparable in amplitude to what is measured in experiment. This is thus the first quantitative estimation of the amplitude of the periodic lattice distortion observed in 1T-TiSe2 as a consequence of the exciton condensate phase.Comment: 5 pages, 3 figures and 1 tabl

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color

    Spontaneous exciton condensation in 1T-TiSe2: a BCS-like approach

    Full text link
    Recently strong evidence has been found in favor of a BCS-like condensation of excitons in 1\textit{T}-TiSe2_2. Theoretical photoemission intensity maps have been generated by the spectral function calculated within the excitonic condensate phase model and set against experimental angle-resolved photoemission spectroscopy data. Here, the calculations in the framework of this model are presented in detail. They represent an extension of the original excitonic insulator phase model of J\'erome \textit{et al.} [Phys. Rev. {\bf 158}, 462 (1967)] to three dimensional and anisotropic band dispersions. A detailed analysis of its properties and further comparison with experiment are also discussedComment: Submitted to PRB, 11 pages, 7 figure

    Hole Pockets in the Doped 2D Hubbard Model

    Full text link
    The electronic momentum distribution n(k){\rm n({\bf k})} of the two dimensional Hubbard model is studied for different values of the coupling U/t{\rm U/t}, electronic density n{\rm \langle n \rangle}, and temperature, using quantum Monte Carlo techniques. A detailed analysis of the data on 8×88\times 8 clusters shows that features consistent with hole pockets at momenta k=(±π2,±π2){\rm {\bf k}=(\pm {\pi\over{2}},\pm {\pi\over{2}})} appear as the system is doped away from half-filling. Our results are consistent with recent experimental data for the cuprates discussed by Aebi et al. (Phys. Rev. Lett. {\bf 72}, 2757 (1994)). In the range of couplings studied, the depth of the pockets is maximum at n0.9{\rm \langle n \rangle \approx 0.9}, and it increases with decreasing temperature. The apparent absence of hole pockets in previous numerical studies of this model is explained.Comment: 11 pages, 4 postscript figures appended, RevTeX (version 3.0

    Monodomain to polydomain transition in ferroelectric PbTiO3 thin films with La0.67Sr0.3MnO3 electrodes

    Get PDF
    Finite size effects in ferroelectric thin films have been probed in a series of epitaxial perovskite c-axis oriented PbTiO3 films grown on thin La0.67Sr0.33MnO3 epitaxial electrodes. The film thickness ranges from 480 down to 28 A (7 unit cells). The evolution of the film tetragonality c/a, studied using high resolution x-ray diffraction measurements, shows first a decrease of c/a with decreasing film thickness followed by a recovery of c/a at small thicknesses. This recovery is accompanied by a change from a monodomain to a polydomain configuration of the polarization, as directly demonstrated by piezoresponse atomic force microscopy measurements
    corecore